

Präzisierende Erkundung Brunnenstandort südlich Obermühlhausen

Untersuchungsbericht

VORHABEN: Erschließung eines alternativen

Grundwasservorkommens für die Trinkwasserversorgung der Gemeinden Thaining und Hofstetten

BAUHERR /

VORHABENSTRÄGER:

Gemeinde Thaining

Dorfplatz 1 86943 Thaining

Gemeinde Hofstetten

Grünsink 2 86928 Hofstetten

BERICHTERSTELLER:

Crystal Geotechnik GmbH Dipl.-Geol. Silke Krause

DATUM:

17. September 2014

PROJEKT-NR.:

H 13206

Dipl.-Ing. Reinhard Schneider

(Institutsleiter)

Dipl.-Geol. Silke Krause

POSTANSCHRIFT

Hofstattstraße 28 86919 Utting

TELEFON

08806 / 95894-0

FAX

08806 / 95894-44

BANKVERBINDUNG

Landsberg-Ammersee Bank eG Kto.-Nr. 209 848 BLZ 700 916 00

INTERNET / E-MAIL

www.crystal-geotechnik.de utting@crystal-geotechnik.de

AG AUGSBURG HRB 9698 GESCHÄFTSFÜHRER Thea Schneider

GESCHÄFTSLEITER

Reinhard Schneider Dr. Gerhard Gold

POSTANSCHRIFT

Schustergasse 14 83512 Wasserburg

TELEFON

08071 / 92278-0

FAX

08071 / 92278-22

wbg@crystal-geotechnik.de

INHALTSVERZEICHNIS

1	ALLGE	MEINES	4
2	VORGA	NG	5
3	DURCH	IGEFÜHRTE FELDARBEITEN	7
4	GEOLO	GISCHE VERHÄLTNISSE	9
	4.3 Mo	rphologische und geologische Verhältnisse	9
5	HYDRO	GEOLOGISCHE VERHÄLTNISSE	11
6		CHE FÖRDERLEISTUNG EINES TRINKWASSERBRUNNENS ANDORT THAI 040	17
7	ZU ER	WARTENDE TRINKWASSERQUALITÄT	18
8	EINZUC WASSE	SSGEBIET UND ABSCHÄTZUNG DER AUSDEHNUNG DES ERSCHUTZGEBIETES AM STANDORT THAI 040	20
9	KONKU	IRRIERENDE NUTZUNGEN	25
10	ALTERI	NATIVE STANDORTE	25
11	WEITE	RES VORGEHEN	26
TΑ	BELLEN		
Tab	pelle (1)	Kenndaten der Bohrungen Thai 040 und Thai 041	10
Tal	pelle (2)	Grundwasserstandsschwankungen im Beobachtungszeitraum Juli 2013 bis Juli 2014	14
Tak	pelle (3)	Kenndaten der Pumpversuche / ermittelter Durchlässigkeitsbeiwert	15
Tak	pelle (4)	Kenngrößen des hydrogeologischen Systems im Umfeld der Bohrung Thai 040	16
Tal	pelle (5)	Mögliche, rechnerische Entnahmemenge aus einem Brunnen im Bereich der Bohrung Thai 040	17
Tab	pelle (6)	Wasserbedarf der Gemeinden Thaining und Hofstetten ¹⁾	21
Tak	pelle (7)	Geometrie des Anstrombereiches	21

ANLAGEN

- (1) Lagepläne
 - (1.1) Lageplan Erkundungsgebiet südlich Obermühlhausen mit Grundwassergleichen, ermitteltem Anstrombereich und abgeschätzter Ausdehnung eines Wasserschutzgebietes, M 1: 5.000
 - (1.2) Lageplan Erkundungsgebiet südlich Obermühlhausen mit Grundwassergleichen, höchstem und niedrigstem Wasserstand im Beobachtungszeitraum vom 11.07.2013 bis 21.07.2014, M 1:5.000
- (2) Geologischer Schnitt 4 4' (Schnitte 1- 1' bis 3 3' sind Anlage des Berichtes vom 20. März 2013)
- (3) Tabelle Kennzeichnende Daten zu Bohrungen und Grundwassermessstellen in der Umgebung des angestrebten Brunnenstandortes Obermühlhausen
- (4) Daten zu den aktuell abgeteuften Bohrungen Thai 040 und 041
 - (4.1) Bohrprofile
 - (4.2) Schichtenverzeichnisse
 - (4.3) Aufzeichnungen zu den Pumpversuchen der Fa. Eder GmbH (4.3.1) Thai 040 (4.3.2) Thai 041
- (5) Grundwasserstandsschwankungen
 - (5.1) 14-tägig gemessene Grundwasserstände
 - (5.2) Grundwasserganglinien der beobachteten Grundwassermessstellen
- (6) Auswertung der Pumpversuche
 - (6.1) Auswertung nach Dalhaus / Dupuit-Thiem
 - (6.2) Computergestützte Auswertung, unter anderem mittlerer Typkurvenvergleich
- (7) Tabelle Schutzfunktion der Grundwasserüberdeckung nach Hölting / Verweilzeit nach Rehse
- (8) Wasserchemische Analysen
 - (8.1) Probenahmeprotokolle
 - (8.2) Prüfberichte der Wasseranalysen
- (9) Bodenmechanische Laborversuche
- (10) Bestimmung des Schüttkorndurchmessers für Filterkies

1 ALLGEMEINES

Die Gemeinden Thaining und Hofstetten beabsichtigen, zur Sicherung der Wasserversorgung einen zweiten Brunnenstandort zu erschließen. Hierzu wurden bereits mehrere Erkundungen ausgeführt, um einen geeigneten Standort zu finden. Die Auswertung der durchgeführten Feldund Laborarbeiten, die in den Untersuchungsberichten unseres Ingenieurbüros vom 13. April 2012 (Projekt-Nr.: H11224) und vom 20. März 2013 (Projekt-Nr.: H12152) dokumentiert sind, ergaben, dass am ehesten im Bereich südlich von Obermühlhausen mit einem Grundwasservorkommen ausreichender Ergiebigkeit zu rechnen ist.

Zur Durchführung von weiteren Erkundungsarbeiten zur Präzisierung des Brunnenstandortes südlich von Obermühlhausen wurde deshalb unser Ingenieurbüro auf Grundlage unseres Angebotes vom 19. Juni 2013 mit Auftrag der Gemeinden Thaining und Hofstetten vom 16.07. und 17.07.2013 beauftragt.

Nach Durchführung von ersten Bohrarbeiten und deren Auswertung zur Ermittlung der Ergiebigkeit des Grundwasservorkommens und der Grundwasserfließrichtung wurde es nach Rücksprache mit dem Wasserwirtschaftsamt erforderlich, zur näheren Erkundung des ins Auge gefassten Gebietes zwei weitere Bohrungen, einen Leistungspumpversuch und chemische Analysen etc. auszuführen und auszuwerten sowie den Grundwasserstand über einen längeren Zeitraum zu messen. Die hierzu durchgeführten Feld- und Laborarbeiten werden im vorliegenden Untersuchungsbericht dokumentiert.

Die vor Ausführung der aktuellen Feldarbeiten durchgeführten Bohrungen, Kurzpumpversuche und Auswertungen sind im Untersuchungsbericht unseres Ingenieurbüros "Erkundung alternativer Brunnenstandort für die Gemeinden Thaining und Hofstetten" vom 20. März 2013 (Projekt-Nr.: H12152) dokumentiert. Die in diesem Bericht genannten, allgemeinen Erläuterungen zur geologischen und hydrogeologischen Situation sowie zum Vorgehen bei der Abschätzung der Ausdehnung eines Wasserschutzgebietes sind auch für die hier nachfolgend beschriebenen Untersuchungen bzw. Auswertungen maßgebend. Diese Angaben und die Angaben zu den im 1. Untersuchungsschritt im Bereich südlich von Obermühlhausen durchgeführten Bohrungen sind dem o.g. Untersuchungsbericht zu entnehmen. Dieser Bericht ist damit als Grundlage für die nachfolgenden Erläuterungen und Auswertungen anzusehen.

2 VORGANG

Südwestlich von Obermühlhausen wurden Anfang der 90-er Jahre im Auftrag des Marktes Dießen am Ammersee Versuchsbohrungen zur Erkundung eines Grundwasservorkommens ausgeführt. Entsprechend den vorliegenden Daten zu diesem Standort war eine ausreichende Ergiebigkeit zur Erschließung des Grundwasservorkommens zu erwarten. Ursprünglich war es vorgesehen, die Ortschaft Obermühlhausen mit Trinkwasser zu versorgen. Nachdem die Ortschaft Obermühlhausen jedoch seit Jahren durch das Wasser der Quelle Bischofsried versorgt wird, besteht von Seiten des Marktes Dießen am Ammersee kein Bedarf mehr, den erkundeten Standort zu nutzen. In einer Besprechung mit dem Wasserwirtschaftsamt vom 03. April 2012, deren Ergebnisse im Aktenvermerk vom 11. April 2012 dokumentiert sind, wurde festgelegt, den Bereich südlich von Obermühlhausen durch das Abteufen von Bohrungen, deren Ausbau zu Grundwassermessstellen, der Ermittlung der Grundwasserfließrichtung und der Ausführung von Kurzpumpversuchen mit Entnahme von Wasserproben zu erkunden. Dies wurde erforderlich, da bei den vorliegenden Erkundungen zum Brunnenstandort von südlich Obermühlhausen die Grundwasserfließrichtung widersprüchlich ermittelt wurde und keine Angaben zur Grundwasserfließrichtung im weiter entfernten Bereich vorlagen. Auf Grundlage einer Neueinmessung der vorhandenen Pegel und Ausführung einer Stichtagsmessung wurden dann die Ansatzpunkte der neu abzuteufenden Bohrungen zur Ermittlung der hydrogeologischen Situation festgelegt.

Wie erwähnt, wurden im 1. Untersuchungsschritt Kurzpumpversuche ausgeführt, Wasserproben entnommen und die hydraulischen Kenndaten ermittelt sowie versucht, das Einzugsgebiet und das sich bei Umsetzung eines Brunnenstandortes in diesem Bereich ergebende Wasserschutzgebiet abzuschätzen. In diesem Zusammenhang wurden die Bohrungen Thai 035, Thai 036, Thai 037 und Thai 038 abgeteuft und zu Grundwassermessstellen ausgebaut. Wie beschrieben, sind die Arbeiten und deren Auswertung im Untersuchungsbericht unseres Ingenieurbüros vom 20. März 2013 dokumentiert.

Die Bohrungen ergaben, dass im Untersuchungsgebiet mit wechselhaften Untergrundverhältnissen zu rechnen ist. In südwestlichen Erkundungsgebiet (Thai 037) ist kein Grundwasserleiter vorhanden. Richtung Westen ist von einer geringen Grundwassermächtigkeit auszugehen. In Teilbereichen war jedoch auch mit einer ausreichenden Grundwassermächtigkeit zu rechnen. Es konnte davon ausgegangen werden, dass ein Brunnen erstellt werden kann, über den Trinkwasser in ausreichender Menge und Qualität gefördert werden kann.

In einem weiteren Untersuchungsschritt, der im hier vorliegenden Untersuchungsbericht dokumentiert wird, wurde es nun erforderlich, den näher ins Auge gefassten Brunnenstandort zu präzisieren und insbesondere die Grundwasserfließrichtung im Anstrombereich zu ermitteln. Aufgrund der bis dahin vorliegenden Erkenntnisse zur Grundwasserfließrichtung musste von einer Anströmung des ins Auge gefassten Standortes (Thai 040) von Süden ausgegangen werden.

Die Erfordernis weitere Feldarbeiten zur Präzisierung des Brunnenstandortes auszuführen, wurde in der gemeinsamen Besprechung mit dem Wasserwirtschaftsamt Weilheim am 24.04.2013, die auch auf Grundlage unseres Untersuchungsberichtes vom 20. März 2013 stattfand, festgelegt. Der durchzuführende Untersuchungsumfang wurde bei dieser Besprechung abgestimmt.

Die durchgeführten Feld- und Laborarbeiten sowie Auswertungen werden nachfolgend dokumentiert.

3 DURCHGEFÜHRTE FELDARBEITEN

Bohrungen mit Ausbau zu Grundwassermessstellen

Zur Präzisierung der geologischen und hydrogeologischen Verhältnisse im Bereich des geplanten Brunnenstandortes und zur Ermittlung des Anstrombereiches auf diesen Brunnenstandort wurden die beiden Bohrungen Thai 040 und Thai 041 abgeteuft. Die Lage des Brunnenstandortes im Bereich der Bohrung Thai 040 wurde gewählt, um keinen landwirtschaftlichen Weg im vermuteten Anstrombereich zu haben und, da in diesem Bereich auf Grundlage der Auswertungen zu den Bohrungen Thai 036 und Thai 038 ein Grundwasservorkommen mit ausreichender Ergiebigkeit vermutet wurde. Auf Grundlage der ermittelten Grundwasserfließrichtung musste davon ausgegangen werden, dass dieser Standort etwa von Süden angeströmt wird. Um den Anstrombereich zu erfassen und die Grundwasserfließrichtung ermitteln zu können, wurde deshalb im vermuteten Anstrombereich und damit südlich der Bohrung Thai 040 die Grundwassermessstelle Thai 041 abgeteuft.

Die Bohrarbeiten wurden mit Schreiben vom 18. Oktober 2013 durch unser Büro angezeigt und mit Schreiben des Landratsamtes Landsberg am Lech vom 28. Oktober 2013 genehmigt. Zur Ausführung des Pumpversuchs wurde ergänzend zur Bohranzeige auf Aufforderung des Landratsamtes Landsberg am Lech ein Antrag mit Datum vom 29. Oktober 2013 gestellt. Ergänzende Angaben hierzu erfolgten mit E-Mail vom 11. November 2013. Die Genehmigung des Pumpversuchs unter Auflagen wurde uns mit E-Mail vom 09. Dezember 2013 zugeleitet. Die Bohrarbeiten wurden wiederum von der Fa. Eder Brunnenbau GmbH, Hebertsfelden, ausgeführt. Die neu abgeteuften Bohrungen tragen die Bezeichnung Thai 040 und Thai 041. Die Lage der Bohrungen kann dem Lageplan in den Anlagen (1.1) und (1.2) entnommen werden. Die beiden Bohrungen wurden bis 30 m (Thai 040) bzw. 34 m (Thai 041) unter Geländeoberfläche abgeteuft. Das Bohrprofil kann dem geologischen Schnitt in Anlage (2) und auch den Anlagen (4.1) und (4.2) entnommen werden. Der Pegelausbau ist ebenfalls in den Anlagen dargestellt.

Pumpversuche

Zur Ermittlung der hydraulischen Kenndaten wurde zum einen nach Ausbau der Messstelle Thai 041 am 17.01.2014 ein 5-stündiger Kurzpumpversuch ausgeführt. Die Aufzeichnungen hierzu können Anlage (4.3.2) entnommen werden. Des Weiteren wurde zur Ermittlung der hydraulischen Kenndaten und um Förderleistungsschwankungen bzw. Wasserspiegelschwankungen bei Wasserentnahme über einen längeren Zeitraum ermitteln zu können. an der Mess-

stelle Thai 040 ein Pumpversuch im Zeitraum vom 18.12.2013 bis 23.01.2014, d.h. über 5 Wochen mit einer Förderleistung von 9,8 l/s bzw. 8,9 l/s, ausgeführt. Zur permanenten Aufzeichnung des Grundwasserstandes wurde ein Datensammler im Entnahmepegel eingebaut. Zudem erfolgte die Messung des Grundwasserspiegels am Pumpbrunnen und den umliegenden Grundwassermessstellen Thai 038, Thai 036 und Thai 041 täglich. Da bis zum 07.01.2014 ein geringer, permanenten Absunk des Wasserspiegels feststellbar war, wurde am 08.01.2014 die Förderleistung von 9,8 l/s auf 8,9 l/s reduziert. Diese Reduzierung reichte aus, um eine Beharrung bzw. einen leichten Anstieg des Grundwasserspiegels zu erreichen. Die Aufzeichnungen zum Pumpversuch an der Grundwassermessstelle Thai 040 können Anlage (4.3.1) entnommen werden.

Entnahme von Wasserproben

Zur Ermittlung des Wasserchemismus und der Varianz bei einer längeren Förderzeit wurde während der Ausführung des Kurzpumpversuchs an der Messstelle Thai 041 eine Grundwasserprobe entnommen und während der Ausführung des Langzeitpumpversuchs an der Messstelle Thai 040 zu Anfang, im mittleren Zeitraum und vor Beendigung des Pumpversuchs durch unser Ingenieurbüro jeweils eine Wasserprobe entnommen. Diese wurde zur chemischen Analyse auf den Parameterumfang der Eigenüberwachungsverordnung (Kurzuntersuchung, PSM, Triazine und auf Analyse der Parameter nach TVO – Anlage 2 sowie auf die Parameter – Anlage 3, Indikatorparameter + § 14) dem Labor Dr. Blasy – Dr. Busse, Eching am Ammersee, übergeben. Die Probenahmeprotokolle können Anlage (8.1) entnommen werden. In Anlage (8.2) sind die Prüfberichte der Wasseranalysen beigelegt.

Bodenproben

Aus den Bohrungen wurden auch Bodenproben entnommen, um an diesen in unserem bodenmechanischen Labor die Kornanteile nach DIN 18123 zu ermitteln. Aus der Kornverteilung
wurde der erforderliche Schüttkorndurchmesser und die erforderliche Schlitzweite für den Brunnenausbau ermittelt. Die Ergebnisse der bodenmechanischen Laborversuche können Anlage
(5), die Bestimmung des Schüttkorndurchmessers Anlage (6) entnommen werden.

Messungen des Grundwasserstandes

Während der Ausführung des Langzeitpumpversuchs wurde in den direkt umliegenden Messstellen Thai 036, Thai 038 und Thai 041 der Grundwasserspiegel gemessen. Des Weiteren wurde, wie mit den Fachbehörden vereinbart, seit dem 11.07.2013 der Grundwasserspiegel an den Messstellen Thai 035, Thai 036, Thai 038, Dies 001, Dies 020, Dies 021 und Dies 022 in 14-tägigem Rhythmus gemessen. Nach Erstellung der Messstellen Thai 040 und Thai 041 wurden diesen beiden Messstellen in das 14-tägige Messprogramm mit einbezogen. Die Messungen des Grundwasserstandes wurden durch die Gemeinde ausgeführt. Die Aufzeichnungen können Anlage (5.1) und die daraus erstellte Grundwasserganglinie Anlage (5.2) entnommen werden.

4 GEOLOGISCHE VERHÄLTNISSE

4.3 Morphologische und geologische Verhältnisse

Die allgemeinen geologischen und morphologischen Verhältnisse sind in unserem Untersuchungsbericht vom 20. März 2013 in Kapitel 4.3 – Morphologische und geologische Verhältnisse (S. 12 – 16) – dargestellt. Auf eine erneute Beschreibung wird deshalb hier verzichtet.

Bei den aktuell abgeteuften Bohrungen Thai 040 und Thai 041 wurde, wie auch Tabelle (1) entnommen werden kann, wiederum die im geologischen Kapitel beschriebene, gering durchlässige Moräne bis 7,10 m (Thai 040) bzw. 12,10 m (Thai 041) unter Geländeoberfläche erkundet.
Auch in diesen beiden Bohrungen wird die Moräne in Ausbildung von Geschiebelehmen bis
29,10 m (Thai 040) bzw. 33,30 m (Thai 041) unter Geländeoberfläche von den würmeiszeitlichen Vorstoßschottern unterlagert. Diese sind wiederum mit wechselndem Sand- und Schluffanteil ausgebildet und wurden in der Bohrung Thai 040 teilweise zu Nagelfluh verfestigt erbohrt.
Geringmächtige, bindige Lagen wurden innerhalb der würmeiszeitlichen Vorstoßschotter in der
Bohrung Thai 040 erkundet. Als Unterlagerndes wurde erwartungsgemäß in beiden Bohrungen
der Grundwasserstauer in Form der tertiären Sedimente, die hier als schwach tonige Schluffe
ausgebildet sind, bis Bohrendteufe zwischen 30 m und 34 m unter Geländeoberfläche erkundet.

Mit dieser Schichtenfolge gliedern sich die erkundeten Bohrprofile gut in die vorhandene geologische Situation ein, wie dies dem erstellten geologischen Schnitt 4 – 4' in Anlage (2) entnommen werden kann. Wir weisen hier darauf hin, dass die geologische Situation auch in den Schnitten 1 – 3 des Berichtes vom 20. März 2013 dargestellt ist. Die Oberfläche des Grundwasserstauers (tertiäre Sedimente) fällt entsprechend den Erwartungen aus den vorhergehenden Bohrungen zunächst leicht nach Norden bzw. Nordosten, östlich Dies024 / Thai038 stark nach Osten ab. Die Oberflächenmorphologie der tertiären Sedimenten kann auch dem Lageplan in Anlage (1) entnommen werden. Wie dem Lageplan in Anlage (1.1) entnommen werden kann und wie dies auch in unserem Bericht vom 20. März 2013 beschrieben wird, wurde westlich der Bohrung Thai 041 durch die Bohrung Thai 037 ein grundwasserfreier Bereich erkundet. Die Ausdehnung des grundwasserfreien Bereiches ist unbekannt. In diesem Bereich werden die tertiären Sedimente von nicht wasserleitender Moräne bzw. Beckensedimenten überlagert. Damit ist davon auszugehen, dass die Tertiäroberflächen-Senke in diesem Bereich durch Moräne- und Beckensedimente aufgefüllt wurde. Ein Hochpunkt der Tertiäroberfläche ist entsprechend den Bohrungen im Bereich der Bohrung Thai 035 zu erkennen. Dieser Hochpunkt bedingt in diesem Bereich eine geringe Grundwassermächtigkeit. Möglicherweise fungiert er auch bei bestimmten Wasserständen als Grundwasserscheide, welche dann eine Grundwasserfließrichtung in unterschiedliche Richtungen bedingt. Nördlich der Bohrungen Thai 036, Thai 040 und Thai 038 fällt die Oberfläche der tertiären Sedimente nach Nordosten bzw. Nord-Nord-Osten ab. Das deutliche Abfallen der Staueroberfläche ist auch im Schnitt 1 – 1' des Berichtes vom 20. März 2013 erkennbar.

Die wesentlichen Kenndaten der neu abgeteuften Bohrungen können nachfolgender Tabelle (1) entnommen werden.

Tabelle (1) Kenndaten der Bohrungen Thai 040 und Thai 041

Boh- rung	GOK	РОК	Morä	ne	Vorstoßso (würmzei		Tertiäre S	edimente	Grundwass am 15.04	
	mNN	mNN	m u. GOK	mNN	m u. GOK	mNN	m u. GOK	mNN	m u. GOK	mNN
Thai 040	669,40	670,45	8,00	661,40	29,10	640,30	30,00 ¹⁾	639,40 ¹⁾	24,52	645,93
Thai 041	675,42	676,48	12,10	663,32	33,30	642,12	34,00 ¹⁾	641,42 ¹⁾	30,47	646,01

¹⁾ Bohrendtiefe

5 HYDROGEOLOGISCHE VERHÄLTNISSE

Eine großräumige Beschreibung unter Einbeziehung der Grundwassermessstellen Thai 011, Thai 013 und der Grundwassermessstelle im Bereich des Kieswerks der Fa. Kutter (ehemals Fa. Riebel) kann unserem Untersuchungsbericht vom 20. März 2013 in Kapitel 4.4 (S. 17 – 20) entnommen werden. Die darin genannten Aussagen zu den großräumigen Grundwasserabflussverhältnissen bleiben bestehen.

Wie auch im genannten Gutachten erwähnt, konnte sich innerhalb der würmeiszeitlichen Vorstoßschotter ein ausgedehntes, zusammenhängendes Grundwasserstockwerk unterschiedlicher Mächtigkeit ausbilden. Wie dem Untersuchungsbericht vom 20. März 2013 entnommen werden kann, ist davon auszugehen, dass das Grundwasservorkommen bei der Kiesgrube der Fa. Kutter nicht mit dem hier zur Erschließung vorgesehenen Grundwasservorkommen kommuniziert. Auch bei der aktuell ausgeführten, großräumigen Stichtagsmessung am 15.04.2014 bestätigten sich die im Untersuchungsbericht vom 20. März 2013 genannten Angaben zur Kommunikation des Grundwassers zwischen Thai 011 und Thai 013 sowie dem Grundwasservorkommen östlich Thai 035, worauf nachfolgend nur kurz eingegangen wird.

Wie im vorhergehenden Untersuchungsbericht beschrieben, ließe sich ein durchgehender (von Thai 011 im Westen bis Dies 001 im Osten) Grundwassergleichenplan erstellen, wenn man davon ausgeht, dass eine Kommunikation bzw. ein Zusammenhängen des Grundwasservorkommens in den Vorstoßschottern (Thai 035 – Thai 040) mit dem Vorkommen in den Geschiebelehmen (Thai 011 / Thai 013) besteht. Allerdings würde sich, wie im Untersuchungsbericht vom 20. März 2013 beschrieben, ein äußerst steiles Grundwassergefälle für diesen Bereich ergeben, weshalb nach wie vor davon ausgegangen wird, dass hier keine durchgehende Kommunikation besteht. Aus diesem Grund wurden die Grundwassergleichen im Bereich zwischen Thai 035 und Thai 011 / Thai 013 nicht im Lageplan dargestellt.

Des Weiteren weisen wir nochmals darauf hin, dass südwestlich bzw. westlich der neu abgeteuften Bohrungen Thai 040 und Thai 041 mit der Bohrung Thai 037 ein grundwasserfreier Bereich erkundet wurde, dessen Ausdehnung gegenwärtig nicht näher bekannt ist.

Die im vorhergehenden Bericht angegebene Kommunikation mit dem Grundwasservorkommen im Bereich Dies 001 bis Dies 003 bestätigt sich bei den aktuellen Untersuchungen.

Zur Ermittlung der Grundwasserfließrichtung unter Einbeziehung der neu erstellten Grundwassermesssstellen Thai 040 und Thai 041 wurde am 15.04.2014 eine großräumige Stichtagsmessung ausgeführt. Die aufgrund der Stichtagsmessung ermittelten Grundwassergleichen und die Grundwasserfließrichtung sind im Lageplan in Anlage (1.1) dargestellt. Wie dem Lageplan entnommen werden kann, bestätigt sich die Grundwasserfließrichtung nördlich Thai 036 und Thai 038 bis zur Bohrung Dies 022. Hier kann eine Grundwasserfließrichtung von Westen bzw. West-Süd-Westen nach Osten bzw. Ost-Nord-Osten angegeben werden. Aufgrund der ausgeführten Messungen ist jedoch zu erkennen, dass der ins Auge gefasste Brunnenstandort im Bereich Thai 040 nicht von Süden angeströmt wird. Auch für diesen Bereich ist eine Anstromrichtung aus Südwesten nach Nordosten zu erkennen. Allerdings ist für diesen Abschnitt zu berücksichtigen, dass dieser zentrale Anstrombereich nur bis maximal zur Bohrung Thai 037 gegeben sein kann, da in diesem Bereich kein Grundwasser vorhanden ist. Dies bedeutet, dass ungefähr ab dem Bereich um Thai 037 von einem Drehen der Anströmrichtung entweder aus Westen oder aus Süden auszugehen ist und dieser Abschnitt umströmt wird. Unter Berücksichtigung der zuvor beschriebenen Tertiärmorphologie halten wir einen Zustrom aus Westen für wahrscheinlicher.

Dass ein ausreichender Wassernachfluss besteht, konnte durch den ausgeführten Langzeitpumpversuch belegt werden, d.h. es ist nicht davon auszugehen, dass der Anströmbereich auf den Pegel Thai 040 südwestlich des Pegels Thai 040 endet. Der Anstrom und damit die Herkunft des Wassers in diesem Bereich ist nicht abschließend geklärt.

Ergänzend zu den dargestellten, großräumigen Grundwasserabflussverhältnissen wurde die Grundwasserfließrichtung beim höchsten und niedrigsten, im Beobachtungszeitraum der zwischen 11.07.2013 bis 21.07.2014 gemessenen Wasserstände in Anlage (1.2) dargestellt. Diese Auswertung wurde vorgenommen, um die mit Grundwasserstandsschwankungen einhergehenden Grundwasserfließrichtungsänderungen, die letztendlich maßgebend für die Ausdehnung des Wasserschutzgebietes sind, erfassen zu können. Wie dem Grundwassergleichenplan in Anlage (1.2) entnommen werden kann, verändert sich die Grundwasserfließrichtung mit der Änderung der Grundwasserstände, obwohl Schwankungen von 2 m gemessen wurden, kaum.

Grundwasserstandsschwankungen

Wie erwähnt, wurden die Grundwasserstände der direkt umliegenden Pegel um die Messstelle Thai 040 während der Ausführung des Langzeitpumpversuchs täglich ermittelt Die Wasserstände der Pegel im weiteren Umfeld wurden seit Juli 2013 14-tägig gemessen. Die Daten und die erstellten Grundwasserganglinien können Anlage (5) entnommen werden. Die Ganglinien wurden nicht durchgehend gezeichnet, wo im Fall des Pegels Thai 035 der Pegel trocken fiel bzw. davon auszugehen war, dass hier Fehlmessungen vorliegen.

Wie den Grundwasserganglinien in Anlage (5) zu entnehmen ist, verlaufen die Grundwasserstandsschwankungen an allen Pegeln annähernd parallel. Dies belegt die Zugehörigkeit zu einem zusammenhängenden Grundwasserstockwerk. Die randlich gelegene Grundwassermessstelle Thai 035 auf dem zuvor beschriebenen Tertiärhoch weist insgesamt geringere Schwankungen auf, vor Trockenfallen des Pegels ist ein geringerer Absunk des Wasserspiegels feststellbar, der möglicherweise aus einer verloren gegangenen, direkten Anbindung an das Grundwasservorkommen resultiert.

Eine geringere Schwankung mit einem geringeren Absunk des Grundwasserspiegels im Beobachtungszeitraum weist ebenfalls die Grundwassermessstelle Dies 001 auf. Die Grundwasserstandsschwankungen im Beobachtungszeitraum vom Juli 2013 bis Juli 2014 können auch nachfolgender Tabelle (2) entnommen werden.

Tabelle (2) Grundwasserstandsschwankungen im Beobachtungszeitraum Juli 2013 bis Juli 2014

Pegel	Höchster Gru spiegel am 1 m u. POK		niedrigster Gr spiegel am 2 m u. POK		Grundwasserstands- schwankung m		
Thai 035	23,98	648,04	25,00	647,02	1,02		
Thai 036	28,40	647,42	30,43	645,39	2,03		
Thai 038	23,31	647,38	25,31	645,38	2,00		
Thai 040	21,99 ⁴⁾	647,41 ¹⁾	25,04	645,41	0,541)		
Thai 041	27,94 ⁴⁾	647,48 ¹⁾	31,00	645,48	0,78 ¹⁾		
Dies 001	3,93	636,51 ³⁾	4,52 ²⁾	635,92 ²⁾	0,59 ¹⁾		
Dies 020	20,34	647,30	22,34	645,30	2,00		
Dies 021	23,91	647,23	25,90	645,24	1,99		
Dies 022	18,00	647,24	19,99	649,28	1,96		
Dies 024	20,18	646,89	21,82	645,25	1,64		

¹⁾ interpoliert

Wie den Ganglinien in Anlage (5) entnommen werden kann, fand im Beobachtungszeitraum ein kontinuierlicher Absunk des Grundwasserspiegels statt. Vom Beginn des Beobachtungszeitraums bis Anfang Oktober 2013 war dieser Absunk besonders stark ausgeprägt. Bis Dezember 2013 blieben die Grundwasserstände auf annähnerd demselben Niveau, bevor ein weiterer, deutlicher Absunk bis 11. Januar 2014 feststellbar war. In diesem Zeitraum des Grundwasserspiegelabsunks wurde der Leistungspumpversuch mit Beobachtung der umliegenden Messstellen ausgeführt. Im Anschluss daran war ein leichtes Ansteigen des Grundwasserspiegels bis ca. Mitte Februar 2014 festzustellen, bevor bis Juli 2014 ein weiterer Absunk des Grundwasserspiegels erkennbar war, d.h. insgesamt sind im Beobachtungszeitraum absinkende Grundwasserstände gegeben. Die Grundwasserstandsdifferenz kann Tabelle (2) entnommen werden. Die angegebenen, höchsten und niedrigsten Wasserspiegel für die Bohrungen Thai 040 und Thai 041 bzw. Dies 001 wurden aufgrund der Grundwasserstandsbewegungen der umliegenden Pegel interpoliert. Der Grundwasserabsunk liegt für den Bereich der Pegel um Thai 040 im Beobachtungszeitraum demnach bei 2 m. Einen geringen Absunk weist der Pegel Dies 001 mit 0,59 m auf; die Grundwasserspiegelschwankungen bei Thai 035 liegen bei nur 1,02 m. Möglicherweise wirken sich Grundwasserstandsschwankungen auf das Umfeld der Bohrung Thai 040 besonders stark aufgrund des grundwasserfreien Bereiches in der ermittelten Grundwasseranstromrichtung aus. Im Bereich der Bohrung Dies 001 sind diese dann bereits ausge-

²⁾ interpoliert, Beendigung der Messungen am 15.05.2014

³⁾ Stichtag 11.07.2013 (höherer Wasserspiegel zu anderem Zeitpunkt)

⁴⁾ unter GOK, zum Zeitpunkt der Messung temporäre Pegeloberkante

glichen. Dagegen spricht jedoch, dass auch in den Messstellen Dies 020 bis Dies 024 vergleichbare Grundwasserstandsschwankungen festgestellt wurden. In der Folgerung ließe sich daraus ableiten, dass unter Umständen auch westlich der Bohrung Thai 035 ein grundwasserfreier Bereich existiert bzw. aus diesem Bereich kein Zustrom erfolgt. Dies würde der hohe liegende Grundwasserstauer im Bereich der Bohrung Thai 035 belegen und bestätigen, dass ein zusammenhängendes Grundwasservorkommen zwischen Thai 035 und Thai 013 / Thai 011 nicht gegeben ist. Bei Ausführung der großräumigen Stichtagsmessung am 15. April 2014 lagen eher Wasserstände im niedrigeren Bereich des Beobachtungszeitraums vor.

Eine großräumige Stichtagsmessung wurde bereits am 06.12.2012 ausgeführt; diese ist im Bericht unseres Ingenieurbüros vom 20. März 2013 dokumentiert. Auch zu diesem Zeitpunkt lagen niedrige Wasserstände vor. Die Daten der großräumigen Stichtagsmessung mit den wesentlichen Kenndaten zu allen vorliegenden Bohrungen können Anlage (3) dieses Berichtes entnommen werden.

Auswertung der Pumpversuche / Hydraulische Kennwerte

Wie beschrieben, wurde am Pegel Thai 041 ein Kurzpumpversuch und an der Messstelle Thai 040 ein 5-wöchiger Langzeitpumpversuch durchgeführt.

Die wesentlichen Kenndaten können nachfolgender Tabelle (3) entnommen werden.

Tabelle (3) Kenndaten der Pumpversuche / ermittelter Durchlässigkeitsbeiwert

Grundwas- sermess- stelle	Ruhewasser- spiegel	Förder- leistung Q	Dauer der Versuchsaus- führung	Absenkung unter Ruhe- wasserspiegel	Trend- korrektur	trendbe- reinigte Absenkung	berechneter Durchlässig- keitsbeiwert
	m u. GOK	l/s	h	s [m]	m	s [m]	k _f m/s
Thai 040	23,09	9,8 - 8,9	864	0,42	0,27	0,15	1 · 10 ⁻²
Thai 041	29,10	3,0	5	0,10		0,10	$6\cdot 10^{-3}$

Die Auswertung der Pumpversuche erfolgte zum einen nach *Dalhaus* und *Dupuiit/Thiem*. Diese Auswertung kann Anlage (6.1) entnommen werden. Zum anderen erfolgte eine computergestützte Auswertung mittels Typkurvenvergleich und dem Programm Hydrotec 6.2 der Fa. Geologic. Diese Auswertungen können Anlage (6.2) entnommen werden.

Da, wie vorhergehend beschrieben, während des Pumpversuchs ein deutilcher Absunk des Grundwasserspiegels festgestellt wurde, wurde eine Trendkorrektur des Absunk während des Pumpversuchs durchgeführt, d.h. zur Auswertung des Pumpversuchs wurde der natürliche Absunk des Grundwasserspiegels herausgerechnet. Als Referenzpegel wurde zum einen der Pegel Thai 040 und zum anderen der Pegel Thai 038 herangezogen. Zudem wurde aufgrund der zahlreichen Werte des Datensammlers, die in das Programm eingelesen wurden, ein Filter für die Datenmenge Δs (Absunk) von 0,005 m angewandt.

Wie auch den Aufzeichnungen entnommen werden kann, wurde während der Ausführung des Leistungspumpversuchs an der Messstelle Thai 040 ein Absunk des Wasserspiegels bei einer Förderleistung von Q = 8.9 l/s von 0,42 m festgestellt. Hieraus ergibt sich eine trendbereinigte Absenkung während des Pumpversuchs von nur 0,15 m.

Unter Berücksichtigung dieser Trendkorrektur ist erkennbar, dass während der Ausführung des Leistungspumpversuchs am Pegel Thai 040 bei den Pegeln Thai 038 (300 m Entfernung) und Thai 036 (180 m Entfernung) keine Absenkung feststellbar war, d.h. bei den Pegeln war keine Beeinflussung des Grundwasserspiegels durch Ausführung des Pumpversuchs erkennbar. Der in Tabelle (3) angegebene Durchlässigkeitsbeiwert für den Standort Thai 040 wurde aus verschiedenen Auswertungsergebnissen gemittelt. Es ist erkennbar, dass der Durchlässigkeitsbeiwert im Bereich der Bohrung Thai 041 geringer ist.

In nachfolgender Tabelle (4) werden die Kenngrößen des hydrogeologischen Systems im Umfeld der Bohrung Thai 040 angegeben.

Tabelle (4) Kenngrößen des hydrogeologischen Systems im Umfeld der Bohrung Thai 040

Hydrogeologische Kenngröße	e	Dimension	Information				
Aquifer			würmzeitliche Vorstoßschotter				
Grundwasserverhältnisse			frei				
Mächtigkeit des Aquifers	Н	m	6 – 10 m (höhere Wasserstände) 4 – 8 m (niedrigere Wasserstände)				
Aquiferdurchlässigkeit	k_{f}	m/s	1 · 10 ⁻²				
Grundwassergefälle	i	%	$0.33^{1)} - 0.50^{2)}$				
Porenvolumen nutzbar	Р	%	25				
Abstandsgeschwindigkeit		m/d	$11^{3)} - 36^{4)}$				

¹⁾ Gefälle im Nahereich des Brunnens

²⁾ Gefälle im weiteren Zustrombereich

³⁾ Abstandsgeschwindigkeit im Nahbereich des Brunnens

⁴⁾ Abstandsgeschwindigkeit im weiteren Zustrombereich

Die in Tabelle (4) genannten, hydrogeologischen Kenngrößen werden für die nachfolgend dargestellten Berechnungen herangezogen. Das angegebene Grundwassergefälle für den weiteren Bereich mit 0,5 % wurde dabei abgeschätzt. Bei einer Interpolation, die, wie beschrieben, nicht im Lageplan in Anlage (1) dargestellt ist, ergäbe sich ein Grundwassergefälle von 1 % zwischen Thai 011 und Thai 035. Aus diesem Grund wurde das Grundwassergefälle im weiteren Bereich mit 0,5 % abgeschätzt.

6 MÖGLICHE FÖRDERLEISTUNG EINES TRINKWASSERBRUNNENS AM STANDORT THAI 040

Auf Grundlage der zuvor beschriebenen und auch in Tabelle (4) dargestellten, hydraulischen Kenndaten wurde die mögliche Förderleistung bei Erstellung eines Brunnens im Bereich Thai 040 abgeschätzt. Hierbei wurde eine Grundwassermächtigkeit von nur 4 m zugrunde gelegt. Diese Mächtigkeit lag bei den niedrigsten Grundwasserständen im Beobachtungszeitraum vor. Dies resultiert aus den aktuell ausgeführten Grundwasserstandsbeobachtungen. Wenn noch niedrigere Grundwasserstände auftreten, würde sich die Grundwassermächtigkeit weiter reduzieren, woraus auch geringere Förderleistungen, wie in Tabelle (5) angegeben, resultieren.

Tabelle (5) Mögliche, rechnerische Entnahmemenge aus einem Brunnen im Bereich der Bohrung Thai 040

Bohrdurchmesser mm	Ausbaudurchmesser mm	mögliche Förderleistung I/s	rechnerische Absenkung bei genannter Entnahmemenge m
600	300	16 – 22	 1.25
800	500	20 – 28	1,75

Wie Tabelle (5) entnommen werden kann, sind rechnerisch aus einem Brunnen in Abhängigkeit vom Bohrdurchmesser 16 – 28 l/s zu entnehmen. Es wird jedoch darauf hingewiesen, dass im Dauerbetrieb die maximale Absenkung bei 1/3 der Aquifermächtigkeit liegen darf. Unter Bezugnahme auf diese Vorgabe kann die maximale Förderleistung von 20 – 28 l/s bei einem Bohrdurchmesser von 800 mm nicht realisiert werden. Dies bedeutet, es ist davon auszugehen, dass zwischen 16 l/s und 22 l/s Grundwasser, basierend auf den ausgeführten Pumpversuchen, im Bereich des Pegels Thai 040 bei entsprechender Dimensionierung des Brunnens ge-

fördert werden kann. Damit wird u. U. die für die Konstanz erforderliche Entnahmemenge von Q = 19,0 l/s über einen längeren Zeitraum nicht gefördert werden können.

Im Hinblick auf die Grundwassermächtigkeit ist davon auszugehen, wie auch Anlage (3) zu entnehmen ist, dass im Bereich nördlich der Linie Thai 040, z.B. im Bereich Thai 036 und Dies 024, etwas größere Grundwassermächtigkeiten und damit etwas höhere Fördermengen zu erwarten sind bzw. größere Sicherheiten der Fördermenge vorliegen.

Aufgrund der ausgeführten Feld- und Laborversuche, die auch, wie beschrieben, den Anlagen (9) und (10) entnommen werden können, sollte der Schüttkorndurchmesser bei Erstellung eines Brunnens mit 5,6 – 8,0 mm gewählt werden. Die Schlitzweite des Filterrohrs sollte zwischen 2 mm und 3 mm betragen.

7 ZU ERWARTENDE TRINKWASSERQUALITÄT

Zur präzisierenden Ermittlung der Eignung des geförderten Grundwassers zu Trinkwasserzwecken wurde der Messstelle Thai 041 bei Ausführung des Kurzpumpversuches und der Messstelle Thai 040 bei Ausführung des Leistungspumpversuches am Anfang, im mittleren Zeitraum und vor Beendigung des Pumpversuches jeweils eine Wasserprobe entnommen und der chemischen Analyse zugeführt. Es wurde der Parameterumfang gemäß Eigenüberwachungsverordnung (Kurzuntersuchung: PSM, Triazine, TVO, Anlage 2 und 3 Indikatorparameter § 14) untersucht. Die Probenahmeprotokolle sowie die Prüfberichte können den Anlagen (8.1) und (8.2) entnommen werden.

Im Wesentlichen entspricht der Wasserchemismus dem bei den vorhergehenden Bohrungen ermittelten, der im Untersuchungsbericht vom 20. März 2013 dokumentiert ist. Der Chemismus des Wassers aus der Messstelle Thai 040 ist mit dem des Wassers aus der Messstelle Thai 041 ist im Wesentlichen bis auf die nachfolgend genannten Parameter vergleichbar.

Das entnommene Wasser war wiederum mit Sauerstoffkonzentrationen zwischen 3,5 mg/l und 6,9 mg/l nicht gesättigt. Dabei ist eine höhere Sauerstoffsättigung vor Beendigung des Pumpversuches zu erkennen. In Korrelation mit der geringen Sauerstoffkonzentration gehen teilreduzierende Verhältnisse einher. Deshalb war im Wasser der Messstelle Thai 041 Eisen und

Mangan sowie im Wasser der Messstelle Thai 040 Eisen, allerdings unter dem Grenzwert der Trinkwasserverordnung, nachweisbar. Im Wasser der Messstelle Thai 040 wurde kein Mangan nachgewiesen; es muss unseres Erachtens davon ausgegangen werden, dass auch Mangan-und Eisenkonzentrationen oberhalb der Bestimmungsgrenze auch bis Überschreitung des Grenzwertes der Trinkwasserverordnung zeitweise auftreten können. Der Grenzwert der Trinkwasserverordnung wird zwar deutlich überschritten, es kann jedoch nicht davon ausgegangen werden, dass keine zeitweisen Überschreitungen der Grenzwerte der Trinkwasserverordnung auftreten.

Die Leitfähigkeit (608 – 654 μs/cm), der pH-Wert (7,09 – 7,27), die Werte für Sulfat (7,5 – 10,0 mg/l), Kalium (< 1 - 3,3 mg/l), Natrium (2,9 - 5,9 mg/l), Magnesium (29,8 - 32,4 mg/l) und Calcium (104 – 117 mg/l) liegen im Normalbereich eines guartären Kalkschotterwassers. Dabei ist die Mineralisation beim Wasser des Pegels Thai 041 etwas höher. Dies mag am Probenahmezeitpunkt während des Kurzpumpversuches liegen. Die Karbonathärte schwankt zwischen 19,8°dH und 24,1°dH und entspricht damit dem Härtebereich "hart". Die Chloridkonzentration war im Wasser des Pegels Thai 040 mit Konzentrationen zwischen 2,6 mg/l und 4,8 mg/l eher gering, im Wasser des Pegels Thai 041 mit 12 mg/l etwas höher, jedoch unauffällig für Kalkschotterwässer. Bromat, Zyanide und die anorganischen Bestandteile Aluminium, Antimon, Arsen, Blei, Bor, Cadmium, Chrom, Nickel, Quecksilber und Selen waren nicht nachweisbar. Ebenso konnten leichtflüchtige Halogenkohlenwasserstoffe, BTEX Aromate und PAK nicht nachgewiesen werden. Bei der Wasserprobe zum Anfang des Pumpversuches Thai 040 konnte Kupfer im Wasser nachgewiesen werden. Der Grenzwert der Trinkwasserverordnung wird allerdings deutlich unterschritten. Fluoride waren wiederum ebenfalls in einer Konzentration zwischen 0,065 mg/l und 0,084 mg/l nachweisbar. Der Grenzwert der Trinkwasserverordnung von 1,5 mg/l wird auch hier deutlich unterschritten. Ebenfalls unterhalb des Grenzwertes der Trinkwasserverordnung, der bei 0,01 mg/l liegt, wurde Uran mit Konzentrationen zwischen 0,00065 mg/l und 0,00098 mg/l nachgewiesen.

Pflanzenbehandlungs- und Schädlingsbekämpfungsmittel wurden im Wasser beider Bohrungen nicht nachgewiesen. Damit war Desethylatrazin, welches im Wasser der Bohrung Thai 038 in geringer Konzentration nachweisbar war, hier nicht mehr vorhanden. Der DOC und TOC waren ohne Auffälligkeiten. Im Wasser des Pegels Thai 041 wurde der Grenzwert der Trinkwasserverordnung für die Trübung mit 1,68 NTU (Grenzwert 1,0 NTU) überschritten; im Wasser des Pegels Thai 040 sank die Trübung während des Pumpversuches von 0,17 NTU auf 0,12 NTU ab. Die Trübung ist unseres Erachtens auf ein nicht ausreichendes Klarpumpen bzw. auf bohr- und ausbaubedingte Vorgänge zurückzuführen. Wie der Leistungspumpversuch

zeigte, geht diese Trübung nach längerem Klarpumpen und somit auch während des Betriebs des Brunnens zurück. Es ist unseres Erachtens deshalb davon auszugehen, dass bei Erstellung eines ordnungsgemäßen Brunnens und Ausführung von Entsandungs- und Klarpumpmaßnahmen sowie eines Leistungspumpversuches der Grenzwert auch hier unterschritten wird.

Die Nitratkonzentration beträgt zwischen 4,8 mg/l und 6,3 mg/l und ist äußerst gering. Nitrit war trotz geringer Sauerstoffkonzentration nicht nachweisbar.

Die geringe Nitratkonzentration in Kombination mit der nicht gesättigten Sauerstoffkonzentration und dem Auftreten von Mangan und Eisen spricht für ein gut geschütztes Grundwasser ohne Kontakt zu sauerstoffreichem Oberflächenwasser. Die Eisen- und Fluoridgehalte lassen auf einen Einfluss von Tertiärwasser oder tertiären Sedimenten schließen. Insgesamt wurde bei allen 4 Proben die Grenzwerte der Trinkwasserverordnung deutlich unterschritten; das Wasser kann für Trinkwasserzwecke gewonnen werden. Im Hinblick auf Nitrat, Schädlingsbekämpfungs- und Pflanzenschutzmittel ist von einer sehr guten Wasserqualität auszugehen. Es ist allerdings zu beachten, wie bereits im vorhergehenden Bericht beschrieben, dass aufgrund der geringen Sauerstoffkonzentration und der erhöhten Eisenkonzentration eine Aufbereitung des Wassers durch Belüftung bzw. eine Reduzierung des Eisengehaltes bei Nutzung als Trinkwasser erforderlich wird. Ebenso sollte die Mischbarkeit des Wassers mit dem aus dem Brunnen Hagenheim und sollten auch weitere differenzierte Analysen bzw. Bewertungen zur Werkstoffund Rohrkorrosion ausgeführt werden.

8 EINZUGSGEBIET UND ABSCHÄTZUNG DER AUSDEHNUNG DES WASSER-SCHUTZGEBIETES AM STANDORT THAI 040

Die Abgrenzung des unterirdischen Einzugsgebietes ist maßgebend für die erforderliche Abschätzung der Ausdehnung eines Wasserschutzgebietes. Hierbei spielt neben der Grundwasserfließrichtung und den hydraulischen Kennwerten auch die entnommene Wassermenge eine Rolle.

Der den Unterlagen entnommene Wasserbedarf der Gemeinden Thaining und Hofstetten kann nachfolgender Tabelle (6) entnommen werden.

Tabelle (6) Wasserbedarf der Gemeinden Thaining und Hofstetten¹⁾

Jahresentnahme ¹⁾	m³/a (l/s)	271.000 (8,6 l/s)
Tagesentnahme ¹⁾	m³/d (l/s)	1.345 (15,6 l/s)
maximale Tagesentnahme ¹⁾	m³/d (l/s)	1.642 (19,0 l/s)

¹⁾ Aus: Trinkwasserversorgung der Gemeinden Thaining und Hofstetten, Wasserrechtsantrag auf Änderung des Schutzpaketes vom 30.10.2009; Dr. Blasy – Dr. Øverland, Eching am Ammersee

Wie Tabelle (6) entnommen werde kann, werden durchschnittliche Wassermengen von Q = 8,6 l/s benötigt. In bedarfsreichen Zeiten wurde die maximale Tagesentnahme mit Q = 19,0 l/s abgeschätzt.

Das unterirdische Einzugsgebiet wird durch Berechnung der sog. Randstromlinie abgeschätzt.

Hierzu werden die in Tabelle (4) angegebenen, hydraulischen Kennwerte verwendet. Die sich hieraus ergebende Geometrie des Anstrombereiches kann nachfolgender Tabelle (7) entnommen werden.

Tabelle (7) Geometrie des Anstrombereiches

Hydrologische Kenngröße		Dimension	Wert
durchschnittliche, tägliche Entnahmemenge	Q	l/s	8,6
durchschnittliche Entnahmemenge bei maximalem Tagesbedarf	Q	l/s	19,0
Durchlässigkeitsbeiwert	k_{f}	m/s	1 · 10 ⁻²
Abstandsgeschwindigkeit	Va	m /d	11 – 17
Radius Absenktrichter nach Sichardt	$R^{1)}$	m	60
rechnerische Entnahmebreite	B ¹⁾	m	65
untere Kulmination (ab Brunnen)	$x_u^{1)}$	m	10
rechnerische Entfernung der 50-Tage-Linie oberstromig ²⁾ (horizontale Fließzeit)		m	900

¹⁾ es wurde hierfür die durchschnittliche Jahresentnahmemenge berücksichtigt

Die angegebene Abstandsgeschwindigkeit von 11 m/d wurde bei Zugrundelegung eines Grundwassergefälles von 0,33 % berechnet. Der Abstandsgeschwindigkeit von 17 m/d liegt ein Grundwassergefälles von 0,50 % zugrunde. Zur Berechnung der Entnahmebreite und der unteren Kulmination sowie des Radius des Absenktrichters wurde das geringere Grundwas-

²⁾ es wurde hier der maximale Tagesbedarf berücksichtigt

sergefälle, welches im brunnennahen Bereich maßgebend ist, berücksichtigt. Zur Berechnung der 50-Tage-Linie wurde das größere Grundwassergefälle angesetzt. Um Fließrichtungsänderungen zu berücksichtigen und da gegenwärtig davon ausgegangen werden muss, dass Wasser von Westen bzw. von Süden dem Standort Thai 040 zufließt, wird es unseres Erachtens erforderlich, den rechnerisch ermittelten Anstrombereich auszuweiten. Dies ist im Lageplan in Anlage 1.1 dargestellt.

Zuspeisungsbereich ≥ mittlerer Schutzbedürftigkeit

Angaben zur Ermittlung der Schutzbedürftigkeit nach *Procher* mit Erläuterungen können dem Erläuterungsbericht vom 20. März 2013 (Seite 29 – 30) entnommen werden. Wie hier dargestellt, besitzen Bereiche mit einer < 25 %-igen Zuspeisungswahrscheinlichkeit eine geringere Schutzbedürftigkeit und sind nicht durch ein Wasserschutzgebiet zu schützen. Nach diesen Berechnungen liegt die oberstromige Begrenzung der Linie mit 25 % Zuspeisungswahrscheinlichkeit vom Brunnen aus in einer Entfernung von 2.240 m. Die maximale Breite des Zuspeisungsbereiches mit 25 % Zuspeisungswahrscheinlichkeit liegt in einer Entfernung von ca. 1.080 m und weist eine Breite von 82 m auf. Hierbei wurde eine dispersive Aufweitung von insgesamt 7° berücksichtigt.

Schutzfunktion der Grundwasserüberdeckung

Zur weiteren Präzisierung des erforderlichen Schutzgebietes ist die Einstufung der Schutzfunktion der Grundwasserüberdeckung nach der Methode von Hölting auszuführen. Demnach ist bei einheitlicher, hoher oder sehr hoher Schutzfunktion die Ausweisung eines minimalen Schutzumgriffs ausreichend. Diese geringe Ausdehnung sollte dann jedoch durch Isotopenhydrogeologische Untersuchungen verifiziert werden. Es ist dabei nachzuweisen, dass es sich um tritiumfreie Tiefenwässer oder Mischwässer handelt, bei denen auch der jüngere Anteil älter als 10 Jahre ist.

Die Schutzfunktion der Grundwasserüberdeckung in den jeweiligen Bohrungen wurde ermittelt und ist in Anlage (7) dargestellt. Wie der Tabelle zu entnehmen ist, wurde an beiden Standorten, bei Thai 040 und Thai 041, eine Punktzahl von > 2.000 erreicht, woraus eine hohe bis teils sehr hohe Schutzfunktion der Grundwasserüberdeckung im umliegenden Bereich gegeben ist. Die ermittelte Schutzfunktion der Grundwasserüberdeckung für die bereits bestehenden Grundwassermessstellen kann dem Erläuterungsbericht vom 20. März 2013 in Anlage (9) entnommen werden. Auch hier wurde bei allen Standorten außer Dies 022 eine Schutzfunktion > 2.000

ermittelt, so dass davon ausgegangen werden kann, dass diese hohe bis teils sehr hohe Schutzfunktion im weiteren Umfeld des Brunnenstandortes Thai 040 flächendeckend vorliegt.

Mögliche Ausdehnung eines Wasserschutzgebietes

Weitere Schutzzone

Im vorhergehenden Kapitel wurde die Ausdehnung der Zone mittlerer Schutzbedürftigkeit (> 25 % Zuspeisungswahrscheinlichkeit; Länge ca. 2.240 m; Breite ca. 82 m) beschrieben. Zur Bemessung des Wasserschutzgebietes sind zudem Fließrichtungsänderungen zugrunde zu legen. Ergänzend ist die Schutzfunktion der Grundwasserüberdeckung zu berücksichtigen. Nähere Angaben hierzu können unserem Erläuterungsbericht vom 20. März 2013 entnommen werden.

Bei der ermittelten, hohen bis sehr hohen Schutzfunktion der Grundwasserüberdeckung wäre ein minimaler Schutzgebietsumgriff ausreichend. Soll dieser minimale Schutzgebietsumgriff realisiert werden, wäre jedoch durch Isotopen-hydrologische Untersuchungen, wie zuvor beschrieben, nachzuweisen, dass es sich um tritiumfreies Tiefenwässer oder Mischwässer handelt, bei denen auch der jüngere Anteil älter als 10 Jahre ist. Bei Nichtvorliegen der Isotopen-hydrologischen Untersuchungen kann aber dennoch die hohe bis sehr hohe Schutzfunktion der Grundwasserüberdeckung in gewisser Weise berücksichtigt werden. Nach LfW-Merkblatt Nr. 1.2/7 wird die Ausweisung einer Zone III empfohlen, die den Vorgaben des DVGW-Merkblattes W 101 für die Zone III A entspricht. Wie auch im vorhergehenden Bericht dargestellt, sollte deshalb die oberstromige Erstreckung der weiteren Schutzzone in Anlehnung an das DVGW-Merkblatt W 101 in einer Entfernung von 1.000 m zum Brunnen liegen. Dies entspricht einer horizontalen Fließzeit von > 50 Tagen. Zudem sollte, wie zuvor erwähnt, das Schutzgebiet ausgeweitet werden, um die Unsicherheit hinsichtlich des oberstromingen Anstroms unter Berücksichtigung des grundwasserfreien Bereiches mit abzudecken.

Engere Schutzzone

Allgemeine Angaben zu den Erfordernissen der engeren Schutzzone können dem Erläuterungsbericht vom 30. März 2013 entnommen werden.

Die rechnerische, horizontale 50-Tage-Fließzeitgrenze liegt in einer Entfernung von ca. 900 m vom Brunnen. Zur Beurteilung der Sickerzeit und des Eliminationsverhaltens wurden Beurtei-

lungen der Reinigungswirkung nach *Rehse* und die Ermittlung der Verweilzeit nach *Rehse* ausgeführt. Zur Berechnung der Verweilzeit nach *Rehse* blieb der oberste Meter, im Allgemeinen die landwirtschaftliche Bodenbearbeitungstiefe, unberücksichtigt.

Wie der Tabelle in Anlage (7) entnommen werden kann, ergibt sich eine rechnerische Verweilzeit nach *Rehse* für die Bohrung Thai 040 von 53 Tagen und für die Bohrung Thai 041 von 29 Tagen. Im weiteren Umfeld der Bohrung Thai 040 schwankt die Verweilzeit zwischen 31 Tagen und 37 Tagen, wie Anlage (9) des Erläuterungsberichtes vom 20. März 2013 entnommen werden kann. Die geringste Reinigungswirkung ist im Bereich der Bohrung Dies 024 mit 28 Tagen gegeben.

Der Reinigungsgrad M_d nach *Rehse* liegt in allen Bohrungen des Einzugsgebietes über 1. Bei einem Reinigungsgrad von ≥ 1 ist die Reinigung in den Decklagen abgeschlossen. Sie enspricht damit der Reinigung im Grundwasser nach einer Aufenthaltszeit von 50 Tagen.

Aufgrund der Lage der **jeweiligen** Brunnenstandorte im land- und forstwirtschaftlich genutzten Gebiet besteht unseres Erachtens nicht die Gefahr der Kontamination mit schwer abbaubaren oder gar persistenten Stoffen in der engeren Schutzzone. Aus diesem Grund schlagen wir vor, eine Ausdehnung der engeren Schutzzone aufgrund der 50-Tage-Fließzeitgrenze unter Berücksichtigung der vertikalen Verweilzeit von 30 Tagen umzusetzen.

Wir schlagen die Unterteilung der engeren Schutzzone in eine Schutzzone II A und II B vor. Dabei sollte die engere Schutzzone IIa den engeren Umgriff des Anstrombereiches bis in eine Entfernung von 150 m erfassen, um den Fassungsbereich und mikrobielle bzw. den Eintrag von humanpathogenen Keimen in der Nähe des Fassungsbereiches zu verhindern. Die Grenze der engeren Schutzzone II B sollte auf Grundlage der noch verbleibenden, horizontalen Fließzeit von 20 Tagen in einer Entfernung von 350 m oberstromig der Brunnen liegen. Die jeweiligen Grenzlinien sind im Lageplan in Anlage (1.1) eingezeichnet.

9 KONKURRIERENDE NUTZUNGEN

Wie auch dem Lageplan in Anlage (1.1) entnommen werden kann, liegt das Gehöft südlich von Ziegelstadel in einer Entfernung von 700 m vom Standort Thai 040 im Anstrombereich und auch in der weiteren Schutzzone. Damit käme Bebauung im Schutzgebiet zu liegen. Aufgrund der guten Grundwasserüberdeckung in diesem Bereich ist es unseres Erachtens jedoch vorstellbar, dass im Hinblick auf die landwirtschaftliche Nutzung keine besonderen Auflagen genannt werden. Im Allgemeinen entsprechen die Auflagen in der weiteren Schutzzone den Anforderungen der ordnungsgemäßen Landwirtschaft. Unseres Erachtens ist es vorstellbar, dass aufgrund der guten Grundwasserüberdeckung im Hinblick auf Bauvorhaben Ausnahmen, an Vorhaben gekoppelt, genehmigt werden. Diesbezüglich empfehlen wir jedoch eine Absprache mit den Fachbehörden. Unter Berücksichtigung, dass das weitere Umfeld des ins Auge gefassten Brunnenstandortes überwiegend land- und forstwirtschaftlich genutzt wird, wäre jedoch ein Schutzgebiet ohne Bebauung idealer. Wir empfehlen auch bezüglich des Vorhabens, falls ein Brunnenstandort mit Lage einer Bebauung im Wasserschutzgebiet realisiert werden sollte, rechtzeitig Kontakt mit den Eigentümern aufzunehmen.

10 ALTERNATIVE STANDORTE

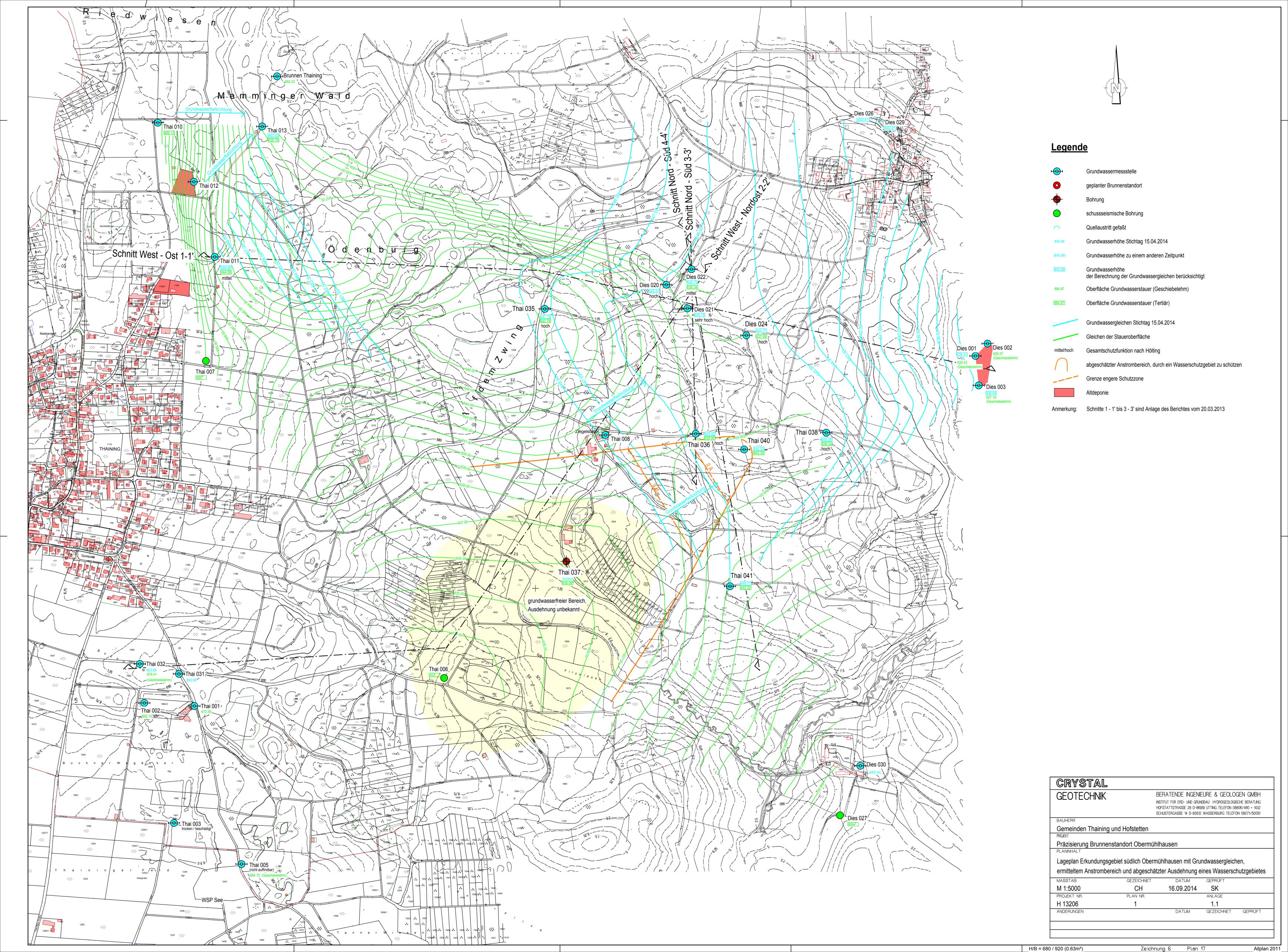
Unseres Erachtens wäre ein Standort nördlich der Bohrungen Thai 036 und Thai 038 sowie südlich Dies 024 aufgrund der nun aktuell ermittelten, geologischen Verhältnisse als idealer anzusehen, da voraussichtlich in diesem Bereich etwas höhere Grundwassermächtigkeiten zu erwarten sind. Ob zur Umsetzung eines Brunnenstandortes in diesem Bereich eine weitere Bohrung mit Pumpversuch ausgeführt werden soll, ist in Zusammenarbeit mit den Fachbehörden und den Gemeinden unter Abwägung des Risiko-Kosten-Verhältnisses zu entscheiden. Allerdings ist davon auszugehen, dass auch bei Lage eines Brunnenstandortes in diesem Bereich die Bebauung Ziegelstadel im Anstrombereich zu liegen kommt. Die Lage von landwirtschaftlichen Wegen im Wasserschutzgebiet (engere Schutzzone) kann unter Umständen dann nicht ausgeschlossen werden. Wir empfehlen auch diesbezüglich eine Absprache mit den Fachbehörden.

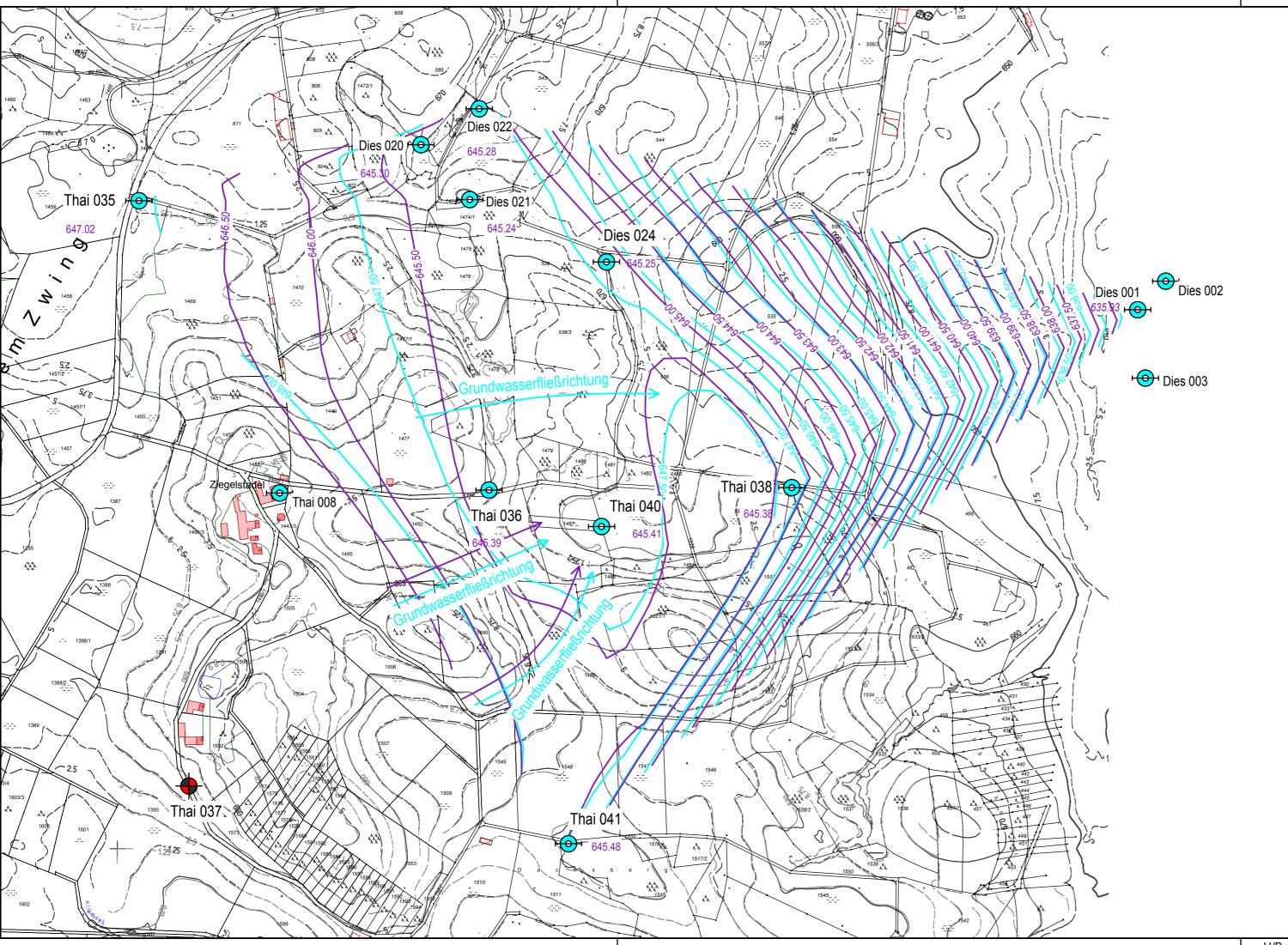
Bei Realisierung eines Brunnenstandortes im Bereich der Bohrung Thai 040 ist aufgrund fehlender Aufschlüsse die Ausdehnung des grundwasserfreien Bereiches im Anstrombereich unzureichend bekannt. Aufgrund des Pumpversuchs lässt sich jedoch ableiten, dass die erforderliche Wassermenge auch über einen längeren Zeitraum gefördert werden kann. Über eine oder zwei weitere Bohrungen im Anstrombereich würde sich hier mehr Klarheit ergeben. Aber die Erfordernis sollte unter wirtschaftlichen Aspekten mit den Gemeinden und den Fachbehörden diskutiert werden.

11 WEITERES VORGEHEN

Auf Grundlage der vorliegenden Untersuchungen empfehlen wir, eine Absprache zum weiteren Vorgehen und zur Realisierung des Wasserschutzgebietes mit den zuständigen Fachbehörden. Hierbei sollte geklärt werden, ob eine weitere Bohrung zur Erkundung der Anstromrichtung im Bereich westlich der Bohrung Thai 040 erforderlich wird. Da nun von einer aus Südwesten gerichteten Grundwasserfließrichtung in diesem Bereich ausgegangen werden muss, liegt keine Bohrung im Anstrombereich vor. Die Ausdehnung des grob abgeschätzten grundwasserfreien Bereiches, der dem Lageplan in Anlage (1) entnommen werden kann, ist damit unklar. Es kann jedoch nicht ausgeschlossen werden, dass dieser, insbesondere bei Umsetzung eines Brunnenstandortes im Bereich der Bohrung Thai 040, für den Anstrombereich und die Ergiebigkeit eine Rolle spielt.

Die Beobachtungen der Grundwasserspiegel an den Messstellen sollten fortgeführt werden.


Auf Grundlage der vorliegenden Untersuchungen sollte unter Einbeziehung der Fachbehörden mit den Gemeinden diskutiert werden, welcher Standort realisiert werden soll, welche Risiken bestehen und ob weitere Bohrungen im Zuge des weiteren Verfahrens notwendig werden.


CRYSTAL GEOTECHNIK

BERATENDE INGENIEURE & GEOLOGEN GMBH

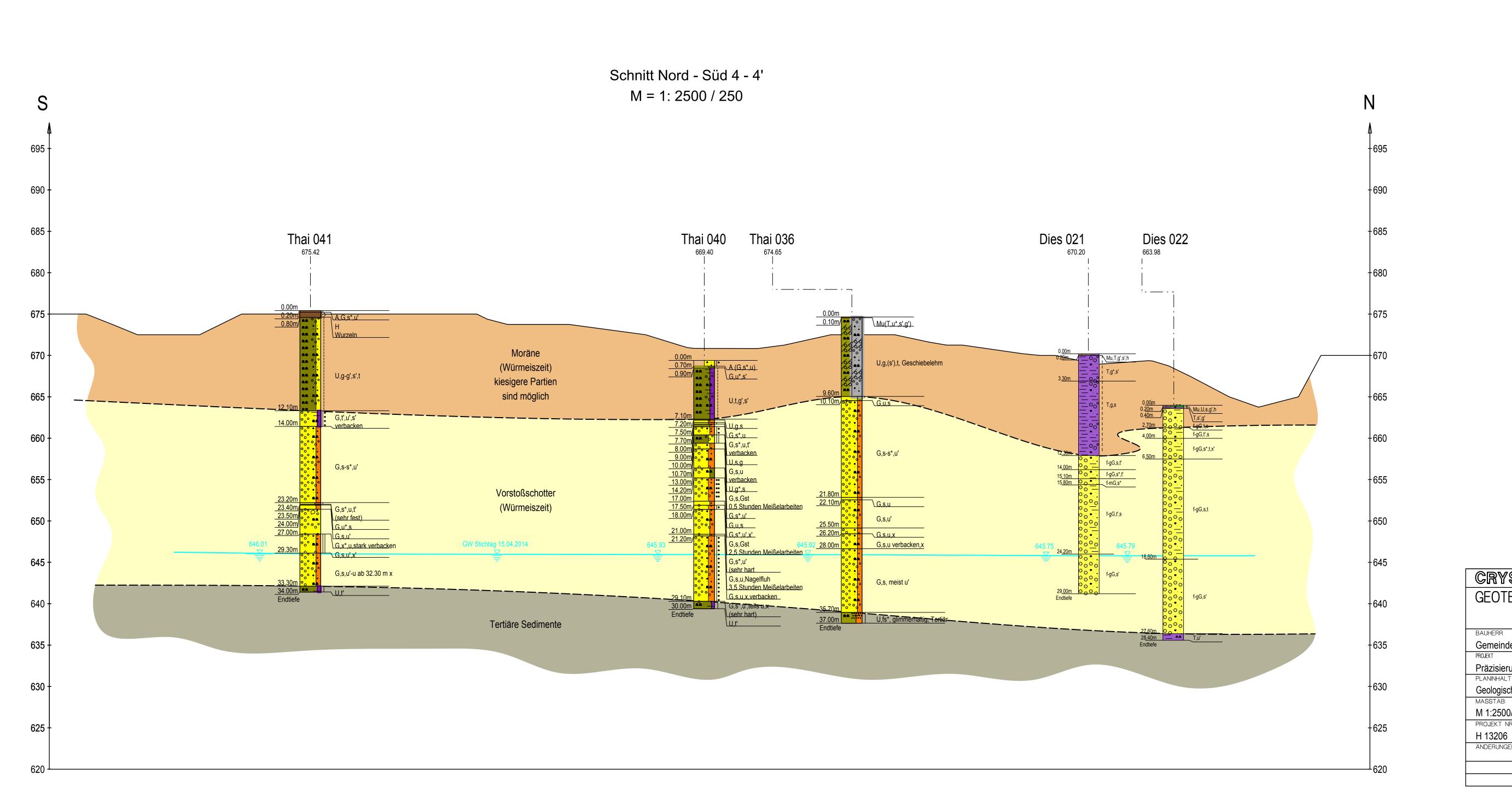
ANLAGE (1)

LAGEPLÄNE

<u>Legende</u>

	Grundwassermessstelle
+	Bohrung
647.42	interpolierter höchster Grundwasserspiegel
647.42	höchster Grundwasserspiegel Stichtag 11.07.2013
645.39	interpolierter niedrigster Grundwasserspiegel
645.39	niedrigster Grundwasserspiegel Stichtag 21.07.2014
	Grundwassergleichen höchster Grundwasserspiegel Stichtag 11.07.2013
	Grundwassergleichen niedrigster Grundwasserspiegel Stichtag 21.07.2014

CRYSTAL										
GEOTECHNIK		BERATENDE INGENIE	EURE & GEOLO	GEN GMBH						
		INSTITUT FÜR ERD- UND GRUN HOFSTATTSTRASSE 28 D-869								
		SCHUSTERGASSE 14 D-83512	WASSERBURG TELEFO	N 08071/50051						
BAUHERR					_					
Gemeinden Thaining und	Hofstetten									
PROJEKT										
Präzisierung Brunnenstandort Obermühlhausen										
PLANINHALT										
Lageplan Erkundungsgebiet	südlich Oberi	mühlhausen mit Gru	ndwassergleich	ien,						
höchster und niedrigster Wa	sserstand im	Beobachtungszeitra	um 11.07.2013	bis 21.07.201	4					
MASSTAB:	GEZEICHNET	DATUM	GEPRÜFT							
M 1:5000	CH	16.09.2014	SK							
PROJEKT NR.	PLAN NR.		ANLAGE							
H 13206	2		1.2							
ÄNDERUNGEN		DATUM	GEZEICHNET	GEPRÜFT						
					_					
					_					


H/B = 297 / 594 (0.18m²) Allplan 2014

CRYSTAL GEOTECHNIK

BERATENDE INGENIEURE & GEOLOGEN GMBH

ANLAGE (2)

GEOLOGISCHER SCHNITT 4 - 4'

CRYSTAL **GEOTECHNIK** BERATENDE INGENIEURE & GEOLOGEN GMBH INSTITUT FÜR ERD- UND GRUNDBAU HYDROGEOLOGISCHE BERATUNG HOFSTATTSTRASSE 28 D-86919 UTTING TELEFON 08806/480 + 1432 SCHUSTERGASSE 14 D-83512 WASSERBURG TELEFON 08071/50051 Gemeinden Thaining und Hofstetten
PROJEKT Präzisierung Brunnenstandort Obermühlhausen Geologischer Schnitt 4 - 4'

MASSTAB: DATUM GEPRÜFT GEZEICHNET M 1:2500/250 16.09.2014 SK CH PROJEKT NR. ANLAGE PLAN NR. H 13206 DATUM GEZEICHNET GEPRÜFT

Ze ichnung 11 Plan 18 Allplan 2014

H/B = 400 / 900 (0.36m²)

j	C	R١	/S 1	ΊΔΙ	GE	OTE	CHI	NIK

BERATENDE INGENIEURE & GEOLOGEN GMBH

ANLAGE (3)

TABELLE – KENNZEICHNENDE DATEN ZU BOHRUNGEN UND GRUNDWASSERMESSSTELLEN IN DER UMGEBUNG DES ANGESTREBTEN BRUNNENSTANDORTES OBERMÜHLHAUSEN

Anlage: 3

Kennzeichnende Daten zu Bohrungen und Grundwassermessstellen in der Umgebung des angestrebten Brunnenstandortes Obermühlhausen

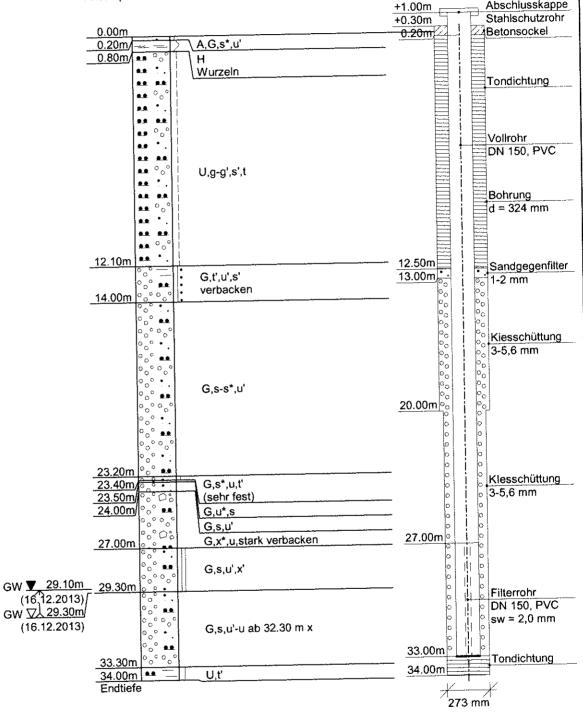
Tabelle H13206

Bezeichnung	Gelände- oberkante	Meßpunkt- oberkante			l nosta	Qua laziale	artär		l würmz	eitliche	Tertiär /	/ Seeton	40.00 / 10.00 P. F.	sserspiegel 15.04.2014	Grund wasser- mächti gkeit
			Deckl	ehme,	Schmel					schotte					
		neu	100 0	łumus	2.5	otter	Geschie	ebelehm	1010101	r	Schluff	e, Tone			Quartär
	mNN	mNN	muGOK		muGOK	_	muGOK		muGOK	mNN	muGOK	2 (5)	muMPOK	mNN	m
Dies 020	666,04	667,64	0,30	665,74			12,60	653,44	25,20	640,84			21,83	645,81	>4,9
Dies 021	670,34	671,14	0,20	670,12			12,30	658,04	29,00	641,34			25,39	645,75	>5,35
Dies 022	663,94	665,24	5,25	0.0,.=			1 -,	,	27,60	636,34	28,40	635,54	19,45	645,79	9,45
Dies 024	667,35	667,07	0,10	667,39			22,40	645,09	29,50	637,99			21,30	645,77	7,78
	,	,	-,				30,00	637,49	,	,				1	
Dies 001	639,58	640,44	0,30	639,28			14,00	625,58	13,10	626,48			4,03	636,41	10,83
Dies 003	641,37	642,17	0,00	000,00			15,00	626,37	14,20	627,17			.,		1
		, , , ,													
Thai 008		682,16													
Thai 006	ca. 680		1,00	ca.679			19,00	661,00	24,00	656,00			keine Grundw	l /assermesstelle	9
Trial 000			1,00	00.010			28,00	652,00	47,00	633,00	48,00	632,00			
Dies 030									.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , ,	17,77			669,34	
Thai 005	701,40		0,20	701,20	5,80	695,60	14,70	686,70	16,70	684,70			nicht auffindba	ır	
Thai 003	688,00		0,20	701,20	3,00	090,00	18,00	670,00	38,00	650,00				assermesstelle	2
11101 007	000,00						10,00	010,00	00,00	000,00			None Granavi		
Thai 031	692,16	692,91	0,50	691,66	14,10	678,06	15,00	677,16							
Thai 032	692,61	693,49	0,60	692,01	3,80	688,81	10,50	682,11	13,20	679,41					
Wsp See		687,59					15,00							687,59	
Vilg 016	699,47	nicht auffinbar			14,00	685,47	16,50	682,97					l nicht auffindba	ır	-
										. 20					
Dies 027	ca. 670		2,00	668,00					21,00	649,00	25,00?			assermesstelle	
Thai 011	680,19	680,88	0,30	679,89	8,80	671,39	35,60	644,59		662,49	37,70	642,49	11,22	669,66	7,17
Thai 013	668,89		0,10				16,20	506,89	The second second second second	651,99			8,02	ca. 660,82	24,03
							24,90	643,99		642,09	22.00	605.00			
							32,10	636,79			33,00	635,89			
Hof 018	684,81		1,60	683,21	8,70	676,11	33,00	651,81	49,20	635,61	50,00	634,81			
Thai 035	670,98	672,02					14,00	656,98		645,78	26,30	644,68	24,84	647,18	2,50
Thai 036	674,65	675,82	0,10	674,55			10,10	664,55		638,95	37,00	637,65	29,90	645,92	8,27
Thai 037	675,96		2,10	673,86	4,50	671,46	39,9 ²	636,06 ²			40,60	635,36			
Thai 038	670,14	670,69	0,60	669,54			12,00	658,14	30,80	639,34	32,00	638,14	24,79	645,90	6,56
Thai 040	669,40	670,45					10,00	659,40	Name and Address of the Owner, where the Party of the Owner, where the Party of the Owner, where the Owner, which is the	640,30	30,00	640,45	24,52	645,93	5,63
Thai 041	675,42	676,48					12,00	663,42	33,20	642,22	34,00	641,42	30,47	646,01	3,79

669,34 Wasserspiegel zu einem anderen Zeitpunkt

687,59 Wasserspiegel am Stichtag

CRYSTAL GEOTECHNIK


BERATENDE INGENIEURE & GEOLOGEN GMBH

ANLAGE (4)

DATEN ZU DEN AKTUELL ABGETEUFTEN BOHRUNGEN THAI 040 UND 041

Präzisierung Brunnenstandort südlich von Obermühlha Projekt: Crystal Geotechnik GmbH H 13206 Projekt-Nr.: Berat. Ingenieure und Geologen 4.1 Anlage: Hofstattstr. 28, 86919 Utting 02. - 05.12.2013 1: 200 / 1: 25 Datum: Maßstab: Tel.: 08806 / 95894-0 5315557.07 Rechtswert: 4424602.87 Hochwert: Fax: 08806 / 95894-44 Messstellenausbau Thai 040 POK: 670.449 mNN Ansatzpunkt: 669.40 mNN Abschlusskappe +0.30m Stahlschutzrohr 0.00m 0.20m A (G,s*,u) 0.70m A 0.90m/ G,u*,s' •• Tondichtung U,t,g',s' 7.10m Vollrohr 7.20m U,g,s DN 150, PVC 7.50m/ G,s*,u 7.70m G,s*,u,t 8.00m verbacken 9.00m U,s,g 11.00m Sandgegenfilter 5anc 1-2 mm 10.00m/ 11.50m G,s,u 10.70m verbacken 13.00m U,g*,s G,s,Gst 14.20m Bohrung 0,5 Stunden Meißelarbeiten d = 324 mmG,s*,u G,u,s G,s*,u',x' 17.00m Kiesschüttung 17.50m G,s,Gst 3-5.6 mm 2,5 Stunden Meißelarbeiten 18.00m G,s*,u' (sehr hart G,s,u,Nagelfluh 21.00m 21.00m 3,5 Stunden Meißelarbeiten 22.00m 21.20m G,s,u,x,verbacken h GW <u>▼ 23.06m</u> 1 Filterrohr (10.12.2013)09:00h į. DN 150, PVC sw = 2,0 mm G,s*,u',teils u,x Klesschüttung (sehr hart) 3-5,6 mm 29.00m o Tondichtung 29.10m Sumpfrohr U,ť 30.00m 30.00m DN 150, PVC Endtiefe 273 mm

Präzisierung Brunnenstandort südlich von Obermühlha Projekt: Crystal Geotechnik GmbH H 13206 Projekt-Nr.: Berat. Ingenieure und Geologen 4.2 Anlage: Hofstattstr. 28, 86919 Utting 10. - 16.12.2013 1: 200 / 1: 25 Datum: Maßstab: Tel.: 08806 / 95894-0 5315068.36 Hochwert: 4424552.32 Rechtswert: Fax: 08806 / 95894-44 Messstellenausbau Thai 041 POK: 676.475 mNN Ansatzpunkt: 675.42 mNN Abschlusskappe +1.00m Stahlschutzrohr +0.30m Betonsockel 0.00m 0.20m A,G,s*,u' 0.20m/ 0.80m/ Wurzeln

(16.12.2013)

Baugrundbohrung 1 Objekt Präzisierung Brunnenstando Obermühlhausen 2 Bohrung Nr. Thai 040 Ort: Thaining Lage (Topographische Karte M = 1 Rechts: Hoch: Höhe des a) zu NN Ansatzpunktes b) zu 3 Lageskizze (unmaßstäblich)	An: Zweck: Aufschlus			sses: 5
Ort: Thaining Lage (Topographische Karte M = 1 Rechts: Hoch: Höhe des a) zu NN Ansatzpunktes b) zu	: 25000); Lotrecht m	t		
Ort: Thaining Lage (Topographische Karte M = 1 Rechts: Hoch: Höhe des a) zu NN Ansatzpunktes b) zu	Lotrecht m			
Rechts: Hoch: Höhe des a) zu NN Ansatzpunktes b) zu	Lotrecht m			
Höhe des a) zu NN Ansatzpunktes b) zu	m		roontang.	
Ansatzpunktes b) zu		gleich Gelände		
Bemerkung:				
4 Auftraggeber: Gemeinde Thaining	/ Gemeinde Hofstetten) 	A	
Fachaufsicht: DiplGeol. Silke Kra				
5 Bohrunternehmen: EDER BRUNNE			en Draiabt N	Nr: 2013-172
9000	5.12.2013 Tagesb Qualifik	ericht-Nr:	riojekti	VI. 2013-172
Geräteführer Ulrich Markus Geräteführer:	Qualifik			
Geräteführer:	Qualifik			
	······································		Baujal	hr:
6 Bohrgerät Typ: Bohrgerät Typ:			Baujai	
7 Messungen und Tests im Bohrloc	h:			
8 Probenübersicht:	Art - Behälter	Anzahl	Aufbewahru	ıngsort
Bohrproben	-			
Bohrproben				
Bohrproben				

9.1.1.1 A	haina mit		nder roben	roben BS = Sondierbohrungen = ram = rammend					B 8	BKR= BK mit richtungsorientierter Kernentnahme BKB= BK mit beweglicher Kernumhüllung BKF= BK mit fester Kernumhüllung = schlag = schlagend				
9.1.1.2 L					ram = rammend druck = drückend					chlac reif	g = schl = greif	agend end		
9.1.2 Bo 9.1.2.1 A EK = Ein DK = Do TK = Dre	hrwerkzei	ohr ohr		HK = VK = H = D =	Hohlk Vollkr Hartn Diam Greife	rone one netalikr antkror			S S K V	Schn = Schnecke Spi = Spirale Kis = Kiespumpe Ven = Ventilbohrer Mei = Meißel SN = Sonde DR = Druckluft				
9.1.2.2 / G = Ge SE = Se	estänge			F =	Hand Freifa Vibro	all				R IY	≃ Drud ≂ Hyd			
9.1.2.3 S WS= Wa LS = Lut	Spülhilfe: asser			SS = DS ≈	Sole Dicks Scha	pülung	l		d		= direl = indir			
		ne Tabellen		<u> </u>										<u> </u>
,	e in m nge in m bis	Bohrver Art	rfahren Lösen	Art	Bohr ø mm	werkze n An	eug itrieb	Spül hilfe	- Auß	Sen	Verrohru Innen ø mm	Tie	rfe 1 Ber	merku
0,00 22,00	22,00 30,00		ram ram	Schap Schap	240 220				32			22, 30,		
9.3 Boh	nrkronen				9.	4 Ger	ätefüh	rer-We	chsel			N:	ame	
1	Nr:	ø Außer		/	r	Nr Ta	ag/Mor Jahr	nat	Uhrzeit	Т	iefe		teführer Ersatz	G
3	Nr: Nr:	ø Außer ø Außer				1	Jani				-			
4	Nr:	ø Außer		1		2								
5	Nr:	ø Außer	n/Innen:	1		3								
6	Nr:	ø Außer	ı/Innen:	/		4	<u> </u>							
	erstmals a	ngetroffen	bei 23.0 erstand 2 3	füllung und 6 m, Anstie 3.06 m unte Art:	g bis		bei		nsatzpur m Boł n bis:		e m A	urt:		
Wasser	-	m bis	m	7 11 6.								echicht		OK I
Wasser Höchster Verfüllun	ng: Filte	errohr	ž	Art	Filters	chüttun m bi	ng ism	Körnui		m	Sperr bis m		Art	
Wasser Höchster Verfüllun	ng: Filte on m bis	errohr s m m	m m	Art	von r	n bi	is m	mm	VOII		-		Art idichtung	
Wasser Höchster Verfüllun	ng: Filte on m bis	errohr s m m	m 50 Fi			m bi			0 0.	m 00	bis m	Ton		
Wasser Höchster Verfüllun	ng: Filte on m bis	errohr s m m	50 Fi	Art Itersand	von r	m bi	is m 11.50	mm 1,0-2,	0 0. 6 29	00	bis m 11.00	Ton	dichtung	
Wasser Höchstel Verfüllun Nr vo	ng: Filte on m bis	errohr s m m 9.00 1	50 Fi F	Art Itersand ilterkies	11.0 11.5 22.0	m bi	is m 11.50 22.00 29.00	mm 1,0-2, 3,0-5, 3,0-5,	0 0. 6 29	.00	bis m 11.00 30.00	Ton	dichtung	Ansa

EDER Brunnenbau GmbH
Kreuzweg 3
84332 Hebertsfelden
Tel 08721 508090 Fax 507230

Anlage	4.		3	•

Bericht:

Az.:

Schichtenverzeichnis

für Bohrungen ohne durchgehende Gewinnung von gekernten Proben

D -		currenteed südlich						
Bauvori Bohr	haben: Präzisierung Br rung Nr. Thai 040	runnenstandort südlich v)	von Uberm	uninausen	Blatt 3	Datum: 02.12.20	013-	
1 1		2			3	05.12.20	5 5	6
	a) Benennung der Bode und Beimengungen				Bemerkungen		ntnomme Proben	ene
Bis	b) Ergänzende Bemerki	ungen	<u></u>		Sonderproben			
m unter Ansatz-	c) Beschaffenheit nach Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Wasserführung Bohrwerkzeuge Kernverlust	Art	Nr	Tiefe in m (Unter-
punkt	f) Übliche Benennung	g) Geologische Benennung	h) Gruppe	i) Kalk- gehalt	Sonstiges			kante)
	a) Auffüllung (Kies, star				Rammkern- bohrung Ø 324 mm			
<u> </u>	b)				erdfeucht			
0.70 c	c) dicht	d) leicht bohrbar	e) braung	grau				
	f)	g)	h)	i)				
	a) Ton, schluffig, schwa	ach kiesig	-		**			· · · · · · · · · · · · · · · · · · ·
	b)							
7.10	c) fest	d) leicht bohrbar	e) grün					
	f)	g)	h)	i)				
	a) Kies, stark sandig, s	chluffig, schwach tonig			4			
	b) verbacken	***************************************			erdfeucht			
7.70	c) dicht	d) mittel bohrba r	e) grau		Garadont			
:	f)	g)	h)	i)				
	a) Ton, stark sandig, so	chwach kiesig		1	11			
	b)							
8.00	c) fest	d) mittel bohrbar	e) hellbr	aun				
	f)	g)	h)	i)				
	a) Kies, stark sandig, s	chluffig			11			
0.00	b) verbacken				erdfeucht			
9.00	c) dicht	d) mittel bohrbar	e) braun)			*	
	f)	g)	h)	i)				

EDER Brunnenbau GmbH
Kreuzweg 3
84332 Hebertsfelden
Tel. 08721 508090 Fax 507230

Anlana	11	~
Anlage	4.	ڪ

Bericht:

Az.:

Schichtenverzeichnis

für Bohrungen ohne durchgehende Gewinnung von gekernten Prober

,		sonrungen onne auronge				·		
Bauvor	haben: Präzisierung B	runnenstandort südlich	von Oberm	nühlhausen		Lav		
Bohr	rung Nr. Thai 040)			Blatt 4	Datum: 02.12.20 05.12.20	013-	
1		2			3	4	5	6
Bis	 a) Benennung der Bode und Beimengungen 				Bemerkungen	Eı	ntnomme Proben	
	b) Ergänzende Bemerk	ungen			Sonderproben			 ,
m unter Ansatz-	c) Beschaffenheit nach Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe	······	Wasserführung Bohrwerkzeuge Kernverlust	Art	Nr	Tiefe in m (Unter-
punkt	f) Übliche Benennung	g) Geologische Benennung	h) Gruppe	i) Kalk- gehalt	Sonstiges			kante)
	a) Kies, tonig, schluffig	,		'	10		· · · · · · · · · · · · · · · · · · ·	
	b)		erdfeucht					
10.00	c) fest bis hart	d) schwer bohrbar	e) braun		o, a road			
	f)	g)	h)	i)				
	a) Kies, sandig, Nagelfi	uh	<u> </u>		17			
	b) 0,5 Stunden Meißelarbeiten							
10.70	c) hart	d) schwer bohrbar	e) grau					
	f)	g)	h)	i)				
	a) Kies, stark sandig, s	chwach schluffig, schwa	ach steinig		If			
	b)				erdfeucht			
17.00	c) mitteldicht	d) schwer bohrbar	e) grau					
	f)	g)	h)	i)				
	a) Kies, sandig, Nagelf	luh	<u> </u>	· · · · · · · · · · · · · · · · · · ·	11			
	b) 2,5 Stunden Meißela	rbeiten			erdfeucht			
17.50	c) hart	d) schwer bohrbar	e) grau					
	f)	g)	h)	i)				
	a) Kies, stark sandig, s	chwach schluffig			77		_	
40.00	b) (sehr hart				erdfeucht			
18.00	c) dicht	d) schwer bohrbar	e) grau					
	f)	Benennung Gruppe 1) Rain gehalt erdfeucht						
				<u></u>			·	

EDER Brunnenbau GmbH	Anlage 4.3
Kreuzweg 3 84332 Hebertsfelden	Bericht:
Tel. 08721 508090 Fax 507230	Az.:

Schichtenverzeichnis

für Bohrungen ohne durchgehende Gewinnung von gekernten Proben

Bauvor	hahen Präzisierung	Brunnenstandort südlich	von Oberm	ıühlhausen				
	rung Nr. Thai 04		TON OBOIN		Blatt 5	02.12.2	Datum: 02.12.2013- 05.12.2013 4	
1		2			3	4	5	6
Bis	a) Benennung der Bo und Beimengungei	denart n			Bemerkungen	E		
m	b) Ergänzende Beme				Sonderproben Wasserführung			1
unter Ansatz-	c) Beschaffenheit nach Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust	Art	Nr	(Unter-
punkt	f) Übliche Benennung	g) Geologische Benennung	h) Gruppe	i) Kalk- gehalt	Sonstiges			(kante)
	a) Kies, sandig, Nage	lfluh		<u> </u>	21			
,	b) 3,5 Stunden Meiße	larbeiten	erdfeucht					
	c) hart	d) sehr schwer bohrbar	e) grau					
	f)	g)	h)	i)				
	a) Kies, stark sandig,	schluffig, stark steinig	\	1	Ruhewasser 23.06m u. AP 10.12.2013			
29.10	b) (sehr hart)				Wasser bei 23,06 m			
29.10	c) dicht	d) sehr schwer bohrbar	e) grau		angebohrt ab 22,00 m			
	f)	g)	h)	i)	RKB Ø 273 mm ab 23,06 m nass			
	a) Feinsand, schluffig	9	Rammkern- bohrung					
	b)				Ø 273 mm feucht			
30.00 Endtiefe	c) fest bis hart	d) schwer bohrbar	e) grün					
r industie	f)	g)	h)	i)				
	T .	1	1	i	1		1	

EDER Brunnenbau Gmb	Н			
Kreuzweg 3				
84332 Hebertsfelden				
Tel. 08721 508090 Fax 5				/, //
Kopfblatt nach DIN 4022 zu für Bohrungen Baugrundbohrung	ım Schichtenverzeichnis	Archiv-N Aktenzei		Anlage: 4,4 Bericht:
1 Objekt Präzisierung Brunne Obermühlhausen			les Schichtenverzeich chte und ähnliches:	nisses: 4
2 Bohrung Nr. Thai 041 Ort: Thaining	Zweck: Aufschl	ussbohrungen		
Lage (Topographische Kart	e M = 1 : 25000):		Nr:	
	och: , Latrec	ht	Richtung:	
Höhe des a) zu NN	J m			
Ansatzpunktes b) zu	m	gleich Gelände		
Bemerkung: 4 Auftraggeber: Gemeinde Ti	naining / Gemeinde Hofstette	en .		, and the second
Fachaufsicht: DiplGeol. S 5 Bohrunternehmen: EDER E	ilke Krause, Crystal Geotech RUNNENBAU in Deutschlan	nnik GmbH, Utting d GmbH, Hebertsf	elden	No. 2012 172
gebohrt von: 10.12.2013 Geräteführer: Ulrich Markus Geräteführer: Geräteführer:	s Qualit Qualit	sbericht-Nr: Tikation: Tikation: Tikation:	г гојект	-Nr: 2013-172
6 Bohrgerät Typ:			Bauj	ahr:
Bohrgerät Typ:			Bauja	ahr:
7 Messungen und Tests im	Bohrloch:			
8 Probenübersicht:	Art - Behälter	Anzahi	Aufbewahi	ungsort
Bohrproben				
Bohrproben				
Bohrproben				
Sonderproben				
Wasserproben				

9.1.1.1 A	ohruna mit		ender Proben	G P BuP= B ui	ohrung mi sewinnung roben ohrung mi nvollständ ondierboh	nichtgeke t Gewinnt iger Probe	ernter ing	BKB BKF		nahme eweglicher nüllung ester Kernu		
9.1.1.2 rot = d					rammend drückend			schla greif	ag = schlag = greife	gend nd		
9.1.2.1 A EK = Ein DK = Do TK = Dr	ohrwerkze Art: nfachkern oppelkernr reifachkerr eilkernrohr	rohr rohr nrohr		VK = H = D = Gr =	Hohlkron Vollkrone Hartmeta Diamanti Greifer Schappe	e allkrone krone		Schr Spi Kis Ven Mei SN	= Spiral = Kiesp = Ventil = Meiße = Sonde	e umpe bohrer el	=	
9.1.2.2 G = Ge SE = Se	estänge			F =	Hand Freifall Vibro			DR HY	= Druck = Hydra			
	Spülhilfe: asser			DS =	Sole Dickspül Schaum	ung		d id	= direkt = indire			
		he Tabelle	en								,	
	e in m nge in m bis	Bohrve Art	erfahren Lösen	Art	Bohrwei ø mm	rkzeug Antrieb	Spül- hilfe	Außen ø mm	Verrohrun Innen ø mm	g Tiefe m	Bem	erku
0,00	20,00		ram	Schap	240			324		20,00		
20,00	34,00		ram	Schap	220			273		34,00		
1 2 3 4 5	Nr: Nr: Nr: Nr: Nr:	ø Auße ø Auße ø Auße	en/Innen: en/Innen: en/Innen: en/Innen: en/Innen:	/ / / /	Nr 1 2 3	Datur Tag/Mo Jahr	nat U	nrzeit	Tiefe	Name Gerätefüh für E		Gi
·	erstmals	er Grundw angetroffe ener Wass	n bei 29.: serstand 2	füllung und 30 m, Anstie 9.10 m unte 1 Art:	g bis			atzpunkt n Bohrtii bis:	efe m Arl		······································	
Höchste	=	m his			Filterschü			T	Sperrse			OK I
	ng:	m bis errohr	<u> </u>						ا محملط ا	l Art		m üb
Höchste Verfüllu Nr vo	ing: Filt on m b	errohr is m r	ø mm	Art	von m	bis m	Körnung mm	1 4011111	bis m			Ansa
Höchste Verfüllu Nr vo	ing: Filt on m b	errohr is m r	mm 150 F	iltersand	von m 12.50	bis m 13.00	mm 1,0-2,0	0.00 33.00	12.50 34.00	Tondich Tondich	ntung	Ansa
Höchste Verfüllu Nr vo	ing: Filt on m b	errohr is m r	150 F		von m	bis m	mm	0.00	12.50	Tondich	ntung	Ansa
Höchste Verfüllu Nr vo	ing: Filt on m b	errohr is m r 33.00	150 F	iltersand ilterkies	von m 12.50 13.00 20.00	13.00 20.00 33.00	mm 1,0-2,0 3,0-5,6 3,0-5,6	0.00	12.50 34.00	Tondich	ntung	Ansa

EDER Brunnenbau GmbH	Anlage 4.4
Kreuzweg 3	Bericht:
84332 Hebertsfelden	Λ
Tel. 08721 508090 Fax 507230	Az.:

Schichtenverzeichnis

für Bohrungen ohne durchgehende Gewinnung von gekernten Proben

		3		Chile			 	······································
Bauvor Bohr	_{tung Nr.} Thai 04	Brunnenstandort südlich v	von Oberm	uninausen	Blatt 3	Datum: 10.12.2	013-	
J0111			····			16.12.2		r
1		2			3	4	5	6
Bis	 a) Benennung der Bod und Beimengungen 				Bemerkungen	E	ntnomme Proben	
	b) Ergänzende Bemer	kungen			Sonderproben Wasserführung			Tiefe
m unter Ansatz-	c) Beschaffenheit nach Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust	Art	Nr	in m (Unter-
punkt	f) Übliche Benennung	g) Geologische Benennung	h) Gruppe	i) Kalk- gehalt	Sonstiges			kante)
		ark sandig, schwach schl	uffig)		Rammkern- bohrung			
	b)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Ø 324 mm erdfeucht			
0.20	c) dicht	d) leicht bohrbar	e) gra u		1			
	f)	g)	h)	i)				
	a) Humus/Torf		٠	ł	"			
	b) Wurzeln							
0.80	c) weich	d) leicht bohrbar	e) schwa	arz				
	f)	g)	h)	i)				
<u></u>	a) Ton, schluffig, sch	wach kiesig		<u></u>	11			
	b)	4444						
12.00	c) steif bis fest	d) schwer bohrbar	e) hellb i	raun				
	f)	g)	h)	i)				
	a) Kies, schwach ton	ig, schwach schluffig, sch	wach sand	iig	17			
	b) verbacken				erdfeucht			
14.00	c) dicht	d) schwer bohrbar	e) braur	ngrau				
	f)	g)	h)	i)				
	a) Kies, stark sandig	, schluffig, schwach tonig	<u> </u>		ab 20,00 m Rammkern-			
	b) (sehr fest)				bohrung Ø 273 mm			
23.40	c) dicht	d) schwer bohrbar	e) grau		erdfeucht			
	f)	g)	h)	i)				

	.,					r ; ; -	1. (1	
	R Brunnenbau GmbH					Anlage	4.4	
	zweg 3					Bericht	•	
	2 Hebertsfelden 08721 508090 Fax 50	7230				Az.:		
161.	00721 300030 1 AX 30	Schich	tenver	zeichn	is	1	·····	
	für B	Bohrungen ohne durchge				1		
Bauvorh		runnenstandort südlich						
	ung Nr. Thai 04	· · · · · · · · · · · · · · · · · · ·			Blatt 4	Datum: 10.12.2 16.12.2	013-	
1		2			3	4	5	6
Bis	a) Benennung der Bode und Beimengungen	enart			Bemerkungen	Е	ntnomm Proben	
	b) Ergänzende Bemerk	ungen			Sonderproben			T:
m unter Ansatz-	c) Beschaffenheit nach Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe	<u> </u>	Wasserführung Bohrwerkzeuge Kernverlust	Art	Nr	Tiefe in m (Unter-
punkt	f) Übliche Benennung	g) Geologische Benennung	h) Gruppe	i) Kalk- gehalt	Sonstiges			kante)
	a) Kies, schwach tonig schwach steinig	, schwach schluffig, sch	wach sand	ig, sehr	Ruhewasser 29.10m u. AP			
	b) verbacken				16.12.2013 Grundwasser			
29.30	c) fest	d) sehr schwer bohrbar	e) braun	grau	29.30m u. AP 16.12.2013 angebohrt			
	f)	g)	i)	" erdfeucht				
	a) Kies stark sandin s	chwach schluffig, sehr s	chwach to	nia	"			
.	3) 1100, 012.11 02.11.3, 1							
	b)							
32.80	c) mitteldicht	d) schwer	e) braun		nass			
	f)	bohrbar g)	h)	i)				
	f)	3)		<u>''</u>				<u> </u>
	a) Kies, schwach tonig	, schwach schluffig, sch	wach sand	lig	वर			
	b)				nass			
33,20	c) sehr dicht	d) schwer bohrbar	1	าเลออ				
	f)	g)	h)	i)				
	a) Ton, schluffig			1	**			
	b)				-			
34.00	c) fest bis hart	d) schwer bohrbar		-				

i)

h)

g)

Endtiefe

EDER Brunnenbau GmbH Kreuzweg 3 84332 Hebertsfelden Tel. 08721 50809-0

Fax: 08721 507230

0 = farblos

Pumpversuchsbericht

Leistungspumpversuch

Baustelle Auftraggeber	_	Brunnenstandort süd naining / Gemeinde Ho		bermühlhausen	Brunnen Nr. Auftrag Nr.	Thai 040
Bohrmeister	Ulrich M.	Versuchsleiter:	Ulrich M	larkus	Pumpversuch Nr.	2
TK 25 Blatt	Rechtswert:		Hochwei	rt:	Geländehöhe:	
Messpunkt ist:		GOK		/ über Gelände		
,		230,0 m	Einleitur		Schacht	
Ableitungsrohre		430,0 III			Schacite	
Überfallbreite des M	lesskastens		mm	Rechteck/Dreieck		
Wasserzählerstand,	Anfang	24617	Ende	54168		
andere Durchflussm	essverfahren:					
Pumpversuch:	vom	18.12.2013	bis	23.01.2014		
Pumpzeit	vom	18.12.2013, 10:00	Uhr bis	23.01.2014, 11:00	Uhr =	865,00 Std.
Wiederanstieg	vom	23.01.2014, 11:00	Uhr bis	23.01.2014, 16:45	Uhr =	5,583 Std.
					11b.,	
Pumpzeit	vom		Uhr bis Uhr bis		Uhr = Uhr =	
Wiederanstieg	vom		OHI DIS		Oiii 2	
Pumpzeit	vom		Uhr bis		Uhr =	
Wiederanstieg	vom		Uhr bis		Uhr =	
		Gesamtstunden		Pumpzeit		865,00 Std.
				Wiederanstieg		5,583 Std.
Bohrverfahren	Ram	mkernbohrung		Bohrspülzusätze		
Wasserproben				(Eintrag auf Blatt Me	sswerte)	
Bohrlochtiefe	30,00	m ab Gelände		Ausbautiefe	30,00	m ab Gelände
Einbautiefe Pumpe	28,00	m ab Gelände		Ruhewasserspiegel	23,09	m ab Gelände
Erklärung der Trübung de	es Wassers (DIN 38	3 404)				
0 = klar		1 = schwach getrübt		2 = stark getrübt	3 = undurchsichtig	
Erklärung der Färbung de	es Wassers (DIN 38	404)		n - cenul	(a B bräunlich)	

2 = stark

1 = schwach

(z. B. bräunlich)

EDER Brunnenbau GmbH

Kreuzweg 3 84332 Hebertsfelden Tel. 08721 508090 Fax: 08721 507230

Pumpversuchsbericht

Baustelle

Thaining

Versuch Nr.

Brunnen Nr.

Blatt

Messwerte

Thai 040

Auftrags Nr.:

_	_
_	Ξ
7	j
=	í
- 27	Ξ
ī	_
ā	j
- 3	
-	_
C	2
,	-
Ż	_
=	3
_	•
S	2
U	ō
ь	ú
-	-
-	-
	3
Ŧ	,
Ū	٠
	-
đ	ن
	í

		Т																		··········		·
		Bemer-	kungen																			
		Farbe																				
		Trübung				erspiegel																
itsangaben		Sand-	führung		cm³/101	Ruhewasserspiegel																
Beschaffenheitsangaben		Tem-	peratur	····	ာ့																	
		Ħ	Wert																			
engen-		Leit-	fähigkeit		µS/cm																	
engen-	pen	Ent-	nahme		1/s	0,0	4,7	4,7	4,7	6,7	5,7	9,7	2'6	6,7	9,7	9,7	6,7	9,7	2,6	8'6	8,6	8'6
Wasserm	angab	spezifi-	scher	Messwert																		
-angaben		Absen-	kung		m	00'0	0,04	0,05	0,05	0,08	0,09	0,12	0,12	0,12	0,12	0,14	0,14	0,14	0,15	0,16	0,17	0,20
Wasserstands-angaben		Wasser-	stand unter	Messpunkt	ш	23,09	23,13	23,14	23,14	23,17	23,18	23,21	23,21	23,21	23,21	23,23	23,23	23,23	23,24	23,25	23,26	23,29
ua		Dauer	seit Pump-	beginn				-														
Zeitangaben		Uhrzeit				10:00	10:01	10:05	11:00	11:01	11:02	11:03	11:04	11:05	11:10	11:20	11:30	12:00	16:00	08:00	16:00	08:00
		Datum			2013/ 2014	18.12.	18.12.	18.12.	18.12.	18.12.	18.12.	18.12.	18.12.	18.12.	18.12.	18.12.	18.12.	18.12.	18.12.	19.12.	19.12.	20.12.

Kreuzweg 3 84332 Hebertsfelden Tel. 08721 508090 Fax: 08721 507230 EDER Brunnenbau GmbH

Pumpversuchsbericht

Baustelle

Thaining

Versuch Nr.

Messwerte

Brunnen Nr.

Thai 040

Auftrags Nr.:

Leistungspumpversuch Blatt

						0							
7	Zeitangaben	nen	Wasserstands-angaben	3-angaben	Wassermengen-	engen-		=	Beschaffenheitsangaben	itsangaben			
					angaben	pen	***						
Datum	Uhrzeit	Dauer	Wasser-	Absen-	spezifi-	Ent-	Leit-	-Hd	Tem-	Sand-	Trübung	Farbe	Bemer-
		seit Pump-	stand unter	kung	scher	nahme	fähigkeit	Wert	peratur	führung			kungen
		beginn	Messpunkt		Messwert		*******						
2013/ 2014			٤	ε		1/s	ms/sm		°	cm³/10 l			
20.12.	16:00		23,31	0,22		8'6							
21.12.	08:00		23,30	0,21		8'6							
21.12.	16:00		23,30	0,21		8'6							
22.12.	08:00		23,30	0,21		8,6							
22.12.	16:00		23,30	0,21		8'6							
23.12.	08:00		23,31	0,22		8'6							
23.12.	16:00		23,31	0,22		8'6							
24.12.	08:00		23,31	0,22		8'6							
24.12.	16:00		23,31	0,22		8'6							
25.12.	08:00		23,33	0,24		8'6							
25.12.	16:00		23,35	0,26		8'6							
26.12.	08:00		23,34	0,25		8′6							
26.12.	16:00		23,38	0,29		8'6							
27.12.	08:00		23,36	0,27		8'6							
27.12.	15:30		23,37	0,28		8'6							
28.12.	08:00		23,38	0,29		8'6							
28.12.	16:00		23,37	0,28		9,8					***************************************		

84332 Hebertsfelden Tel. 08721 508090 Fax: 08721 507230 EDER Brunnenbau GmbH Kreuzweg 3

Pumpversuchsbericht

Baustelle

Versuch Nr.

Thaining

Brunnen Nr.

Messwerte

Blatt

Thai 040

Auftrags Nr.:

			· · · · · ·													· · · · · · · · · · · · · · · · · · ·							
			Bemer-	kungen	•							7777			TO THE PARTY NAMED IN								
			Farbe																				
;			Trübung																				
	itsangaben		Sand-	führung		cm³/10																	
	Beschaffenheitsangaben		Tem-	peratur		ပ္																	
uch	8		-Hd	Wert		****																	
Leistungspumpversuch			Leit-	fähigkeit		m2/cm																	
Leistungs	nengen-	þen	Ent-	nahme		s/ı	9.6	8,6	8,6	8'6	8,6	8,6	8'6	8'6	8'6	8'6	8'6	8,6	8,6	8'6	8'6	8'6	8,6
	Wassermengen-	angaben	spezifi-	scher	Messwert																		
	-angaben		Absen-	kung		Ε	0,31	0,31	0,31	0,30	0,31	0,31	0,34	0,33	0,34	0,36	0,36	0,37	96,0	0,35	0,41	0,41	0,41
	Wasserstands-angaben		Wasser-	stand unter	Messpunkt	Ε	23,40	23,40	23,40	23,39	23,40	23,40	23,43	23,42	23,43	23,45	23,45	23,46	23,45	23,44	23,50	23,50	23,50
	5		Daner	seit Pump-	beginn																		
	Zeitangaben		Uhrzeit	 			00:80	16:00	08:30	17:00	00:80	17:00	00:60	16:00	08:00	16:00	08:00	16:00	08:00	16:00	08:00	16:00	08:00
			Datum			2013/	29.12.	29.12.	30.12.	30.12.	31.12.	31.12.	01.01.	01.01.	02.01.	02.01.	03.01.	03.01.	04.01.	04.01.	05.01.	05.01.	06.01.

EDER Brunnenbau GmbH

Kreuzweg 3 84332 Hebertsfelden Tel. 08721 508090 Fax: 08721 507230

Pumpversuchsbericht

Baustelle

Versuch Nr.

Thaining

Messwerte

Blatt

Thai 040

Auftrags Nr.:

Brunnen Nr.

			Berner-	kungen			:																	
			Farbe																					
			Trübung																					
	itsangaben		Sand-	führung		cm³/10 i																		
	Beschaffenheitsangaben		Tem-	peratur		ů																		
nch	ω.		μď	Wert																				
Leistungspumpversuch			Leit-	fähigkeit		m2/cm																		
Leistungs	nengen-	pen	Ent-	nahme		1/s		8,6	9,8	8,6	9,8	8,9	6,8	6,8	8,9	8,9	6,8	6,8	8,9	8,9	6′8	8,9	8,9	8,9
	Wassermengen-	angaben	spezifi-	scher	Messwert																			
	-angaben		Absen-	kung		Ε		0,42	0,42	0,41	0,43	0,41	0,39	0,40	0,40	0,44	0,43	0,41	0,42	0,43	0,42	0,42	0,42	0,42
	Wasserstands-angaben		Wasser-	stand unter	Messpunkt	ε		23,51	23,51	23,50	23,52	23,50	23,48	23,49	23,49	23,53	23,52	23,50	23,51	23,52	23,51	23,51	23,51	23,51
	ue		Dauer	seit Pump-	beginn																			
	Zeitangaben		Uhrzeit					16:00	00:60	16:00	08:30	10:00	16:00	08:30	16:00	08:30	16:30	08:30	16:00	08:30	16:00	08:30	16:30	08:30
			Datum			2013/	2014	06.01.	07.01.	07.01.	08.01.	08.01.	08.01.	09.01.	09.01.	10.01.	10.01.	11.01.	11.01.	12.01.	12.01.	13.01.	13.01.	14.01.

Pumpversuchsbericht

Baustelle

Thaining

Versuch Nr.

Messwerte

Brunnen Nr.

Thai 040

Auftrags Nr.:

-	
Ÿ	
rsuc	
_	
2	
-	
<i>a</i> .	
v	
mpver	
-	
_	
_	
_	
_	
_	
<u> </u>	
y,	
20	
~~	
_	

_	
tungspu	
7.7	
<u>.v</u>	
Leis	
<u> </u>	
w	
1	i
-	i

Blatt

		Т				T	T	T	Τ	Т	Τ	1	Τ		1	Τ	T	1	Т	т	1	Ţ
		Bemer-	kungen)																		
		Farbe																				
		Trübung																				
itsangaben		Sand-	führung		cm³/10 l																	
Beschaffenheitsangaben		Tem-	peratur		ပ္																	
		#	Wert		**********																	
engen-		Leit-	fähigkeit		m2/cm																	
nengen-	ben	Ent-	nahme		s/I	6,8	8,9	6'8	6'8	8,9	8,9	6′8	6'8	6′8	6′8	6'8	8,9	8,9	8,9	8,9	8,9	6′8
Wassermengen-	angab	spezifi-	scher	Messwert																		
-angaben		Absen-	kung		٤	0,43	0,45	0,45	0,44	0,44	0,44	0,44	0,43	0,43	0,43	0,43	0,44	0,42	0,44	0,44	0,42	0,42
Wasserstands-angaben		Wasser-	stand unter	Messpunkt	ε	23,52	23,54	23,54	23,53	23,53	23,53	23,53	23,52	23,52	23,52	23,52	23,53	23,51	23,53	23,53	23,51	23,51
en	***************************************	Dauer	seit Pump-	beginn																		
Zeitangaben		Uhrzeit				17:30	08:30	16:00	08:30	16:00	08:30	16:30	00:60	16:00	08:00	16:30	00:80	16:00	08:00	16:00	08:00	16:00
		Datum			2013/	14.01.	15.01.	15.01.	16.01.	16.01.	17.01.	17.01.	18.01.	18.01.	19.01.	19.01.	20.01.	20.01.	21.01.	21.01.	22.01.	22.01.

Kreuzweg 3 84332 Hebertsfelden Tel. 08721 508090 Fax: 08721 507230 EDER Brunnenbau GmbH

Pumpversuchsbericht

Baustelle

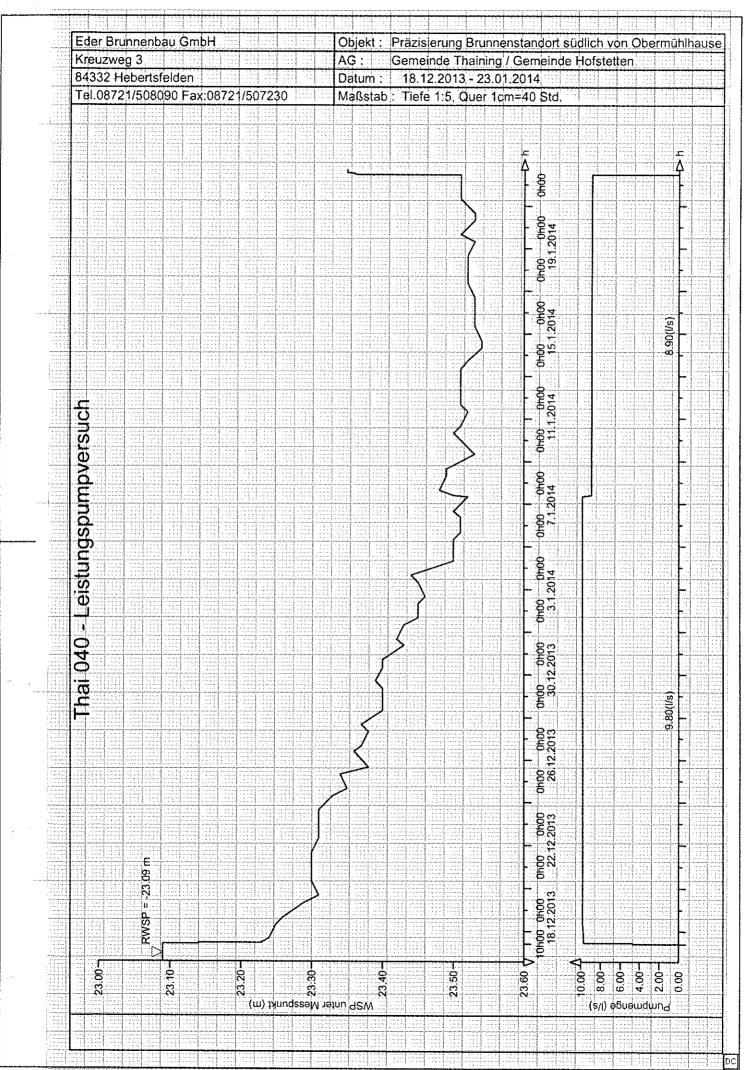
Thaining

Versuch Nr.

Messwerte

Brunnen Nr.

Thai 040


9

Blatt

Auftrags Nr.:

	2	=
	L	,
	**	٠
	-	•
	Ľ	•
	٩	j
	2	
	2	1
	٤	=
	Ξ	3
	C	1
	u	1
	Þ	ĺ
	٢	-
	-	4
	:	4
•	٠.	
_	v	7
٠	7	7
	u	4

		Berner-	kungen																	
		Farbe						Leistungspumpversuch beendet	ssungen											
		Trübung			;			umpversu	Wiederanstiegsmessungen											
itsangaben		Sand-	führung		cm³/10			Leistungsp	Wiedera											
Beschaffenheitsangaben		Tem-	peratur		ာ့															
		Hd	Wert					****												
engen-		Leit-	fähigkeit		μS/cm															
nengen-	ben	Ent-	nahme		1/s	8,9	8,9		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
Wasserm	angal	spezifi-	scher	Messwert																
s-angaben		Absen-	kung		Е	0,42	0,42		0,30	0,29	0,29	0,29	0,29	0,28	0,27	0,27	0,26	0,26		
Wasserstands-angaben		Wasser-	stand unter	Messpunkt	E	23,51	23,51		23,39	23,38	23,38	23,38	23,38	23,37	23,36	23,36	23,35	23,35		
ue		Dauer	seit Pump-	beginn			865,0									2,0		5,583		
Zeitangaben		Uhrzeit				08:45	11:00		11:10	11:12	11:13	11:14	11:15	11:20	11:50	13:10	13:30	16:45		
		Datum			2013/	23.01.	23.01.		23.01.	23.01.	23.01.	23.01.	23.01.	23.01.	23.01.	23.01.	23.01.	23.01.		

Fax: 08721 507230

Pumpversuchsbericht

Erklärung der Färbung des Wassers (DIN 38 404)

1 = schwach

0 = farblos

Klarpumpen

Baustelle Auftraggeber	_	Brunnenstandort süd naining / Gemeinde H		bermühlhausen	Brunnen Nr. Auftrag Nr.	Thai 041
Bohrmeister	Ulrich M.	Versuchsleiter:	Ulrich M	1arkus	Pumpversuch Nr.	1
TK 25 Blatt	Rechtswert:		Hochwe	rt:	Geländehöhe:	
Messpunkt ist:		GOK	m unter	/ über Gelände		
Ableitungsrohre		30,0 m	Einleitui	ng in	Schacht	
Überfallbreite des M	lesskastens		mm	Rechteck/Dreieck		
Wasserzählerstand,	Anfang		Ende			
andere Durchflussm	essverfahren:					
Pumpversuch:	vom	17.01.2014	bis	17.01.2014		
Pumpzeit	vom	17.01.2014, 13:00	Uhr bis	17.01.2014, 18:00	Uhr =	5,00 Std.
Wiederanstieg	vom	17.01.2014, 18:00	Uhr bis	17.01.2014, 18:18	Uhr =	0,30 Std.
Pumpzeit	vom		Uhr bis		Uhr ≃	
Wiederanstieg	vom		Uhr bis		Uhr =	
Pumpzeit	vom		Uhr bis		Uhr≃	
Wiederanstieg	vom		Uhr bis		Uhr =	
		Gesamtstunden	5,3 h	Pumpzeit Wiederanstieg		5,00 Std. 0,30 Std.
Daharantahaan	D			Q		0,30 3ta.
Bohrverfahren	Kami	mkernbohrung		Bohrspülzusätze		
Wasserproben				(Eintrag auf Blatt Me	sswerte)	
Bohrlochtiefe	34,00	m ab Gelände		Ausbautiefe	33,00	m ab Gelände
Einbautiefe Pumpe	32,70	m ab Gelände		Ruhewasserspiegel	29,10	m ab Gelände
Erklärung der Trübung de 0 = klar	s Wassers (DIN 38	404) 1 = schwach getrübt		2 = stark getrübt	3 = undurchsichtig	

2 = stark

(z. 8. bräunlich)

Pumpversuchsbericht

Baustelle

Thaining

Versuch Nr.

Messwerte

Brunnen Nr.

Blatt

Thai 041

Auftrags Nr.:

		Bemer-	valiga.																		
		Farbe																			
		Trübung			rspiegel																
	tsangaben	Sand-	, o	cm³/101	Ruhewasserspiegel																
	Beschaffenheitsangaben	Tem-		ပ္																	
	8	-Hd																			
oen		Leit-	0	m2/cm																	
Klarpumpen	nengen- ben	Ent-		s/	0,0	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	2,0	2,0	2,0	2,0	2,0	2,0	2,0
	Wassermengen- angaben	spezifi- scher	Messwert																		
	s-angaben	Absen- kung	0	ε	00'0	0,01	0,01	0,01	0,01	0,01	0,02	0,02	0,02	0,02	0,04	0,04	0,04	0,04	0,04	0,04	0,04
	Wasserstands-angaben	Wasser-	Messpunkt	E	29,10	29,11	29,11	29,11	29,11	29,11	29,12	29,12	29,12	29,12	29,14	29,14	29,14	29,14	29,14	29,14	29,14
	Ç	Dauer seit Pump-	beginn										0,5	1,0							
	Zeitangaben	Uhrzeit			13:00	13:01	13:02	13:03	13:04	13:05	13:10	13:20	13:30	14:00	14:01	14:02	14:03	14:04	14:05	14:10	14:20
***************************************	- 	Datum	1	2014	17.01.	17.01.	17.01.	17.01.	17.01.	17.01.	17.01.	17.01.	17.01.	17.01.	17.01.	17.01.	17.01.	17.01.	17.01.	17.01.	17.01.

Pumpversuchsbericht

Messwerte

ags Nr.:

Bernerkungen

Baustelle	മ	Thaining				Brunnen Nr.	Nr.	Thai 041				Auftrags
Versuch Nr.	Ž.	ਜ				Blatt		2				
						Klarpumpen	oen					
	Zeitangaben	nec	Wasserstands-angaben	s-angaben	Wassermengen-	engen-	:		Beschaffenheitsangaben	itsangaben		
					angaben	pen						
Datum	Uhrzeit	Dauer	Wasser-	Absen-	spezifi-	Ent-	Leit-	-Hd	Tem-	Sand-	Trübung	Farbe
		seit Pump-	stand unter	kung	scher	nahme	fähigkeit	Wert	peratur	führung		
		beginn	Messpunkt		Messwert							
2014	***********		ε	ε		s/ı	µS/cm		ာ့	cm³/101		
17.01.	14:30	1,5	29,15	0,05		2,0						
17.01.	15:00	2,0	29,15	0,05		2,0						
17.01.	15:01		29,16	90'0		3,0						
17.01.	15:02		29,16	90'0		3,0						
17.01.	15:03		29,16	90'0		3,0						
17.01.	15:04		29,16	90'0		3,0						
17.01.	15:05		29,17	0,07		3,0						
17.01.	15:10		29,18	0,08		3,0						
17.01.	15:20		29,18	0,08		3,0						
17.01.	15:30	2,5	29,18	0,08		3,0						
17.01.	16:00	3,0	29,18	80′0		3,0						
17.01.	17:00	4,0	29,20	0,10		3,0						
17.01.	18:00	5,0	29,20	0,10		3,0						
										Klarpum	Klarpumpversuch beendet	eendet
										3		

Pumpversuchsbericht

Baustelle

Versuch Nr.

Thaining

Messwerte

Brunnen Nr.

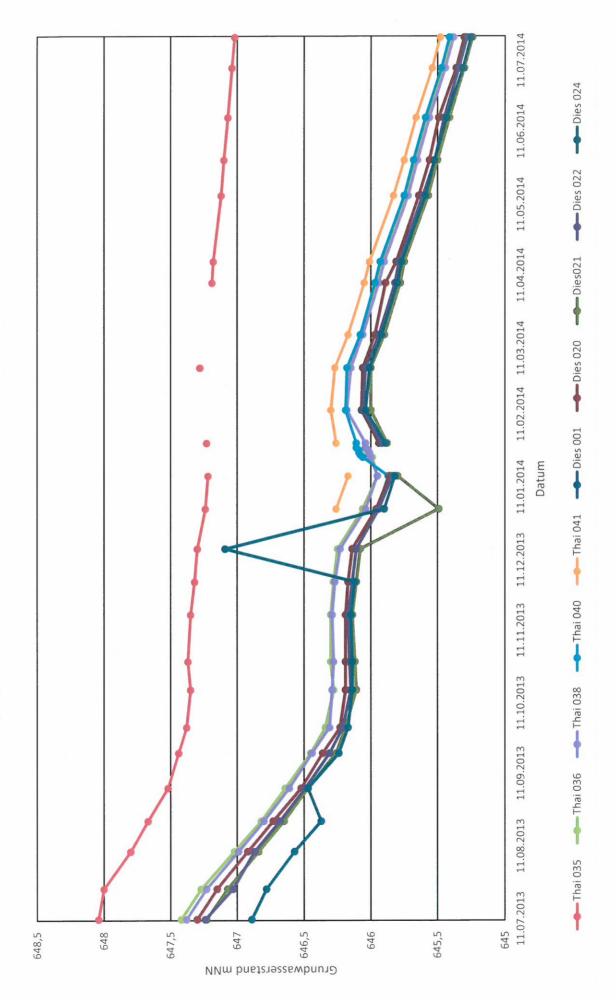
Blatt

Thai 041

Auftrags Nr.:

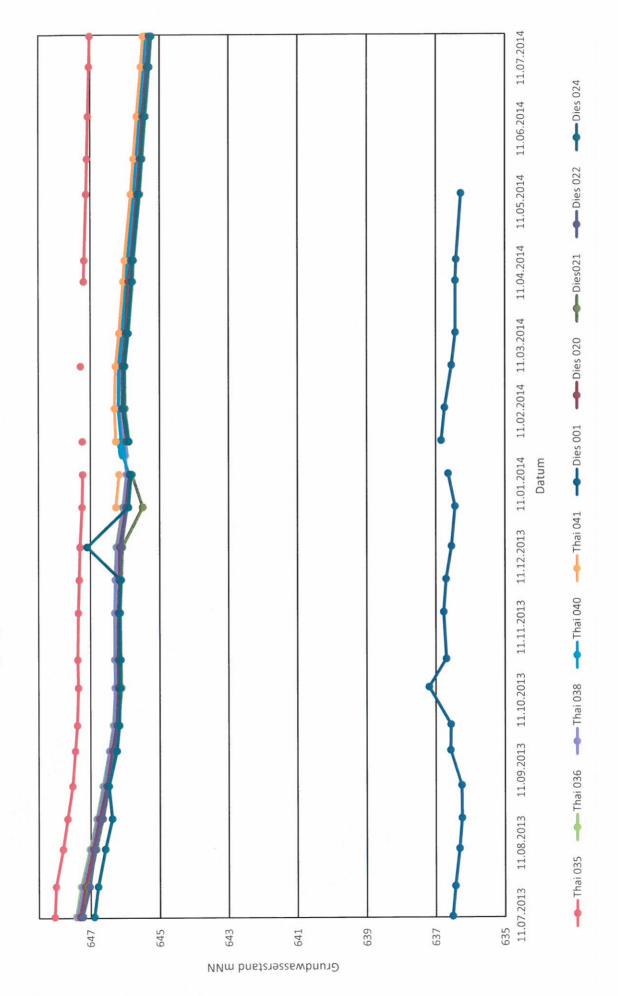
			T T			Τ	1	T	T	1		T	γ	Ţ	T	Ţ		
		Berner- kungen						TTTTTWW/iti									-	
		Farbe	ssungen															
	1 11 11 11 11 11 11 11 11 11 11 11 11 1	Trübung	Wiederanstiegsmessungen															
	itsangaben	Sand- führung cm³/101	Wiedera															
	Beschaffenheitsangaben	Tem- peratur °C																
	8	pH. Wert																
pen		Leit- fähigkeit µS/cm																
Klarpumpen	nengen- Iben	Ent- nahme 1/s	0,0	0,0	0,0	0,0	0,0											
	Wassermengen- angaben	spezifi- scher Messwert																
	s-angaben	Absen- kung m	0,03	0,02	0,02	0,01	0,00											
	Wasserstands-angaben	Wasser- stand unter Messpunkt m	29,13	29,12	29,12	29,11	29,10											***************************************
	5	Dauer seit Pump- beginn																
	Zeitangaben	Uhrzeit	18:01	18:03	18:04	18:10	18:18											
		Datum 2014	17.01.	17.01.	17.01.	17.01.	17.01.											

^	D١	/91	ΓΔΙ	GE	:OT	FC	HI.	JIK
د. ۱	R :		I ML	\3E				u i r


BERATENDE INGENIEURE & GEOLOGEN GMBH

ANLAGE (5)

GRUNDWASSERSCHWANKUNGEN


Datum	Tha	Thai 035	Thai 036	336	Thai 038	338	٢	Thai 040	_	T	Thai 041	_	Dies 001		Dies 020		Dies 021	Die	Dies 022	Dies 024	024
	POK:	672,02	POK:	675,82	POK:	670,69 GOK	GOK:		669,4 GOK:			675,42 POK:		640,44 POK:		667,64 POK:	671	671,14 POK:	665,24 POK		667,07
							POK:	6	670,45 POK:	К:	9	676,48									
	m ü POK	MNN	m ü POK	NNm	m ü POK	NNm	m üPOK	E	mNN m	m üPOK	NNW		m ü POK mNN		m ü POK mNN	N ü POK	OK mNN	m ü POK	NNM	m ü POK	MNN
11.07.2013	3 23,98	648,04		647,42	23,31	647,38							3,93 63	636,51	20,34 64	647,3 23	23,91 647,23	,23 18,00	00 647,24	20,18	646,89
24.07.2013	3 24,02	648	28,55	647,27	23,46	647,23							4,01 63	636,43	20,49 647	647,15 24	24,07 647,07	,07 18,21	21 647,03	20,29	646,78
09.08.2013	3 24,22	647,8	28,80	647,02	23,70	646,99							4,13 63	636,31	20,72 646	646,92	24,30 646,84	,84 18,37	37 646,87	20,5	646,57
22.08.2013	3 24,35	647,67	29,00	646,82	23,89	646,8							4,20 63	636,24	20,91 646	646,73 24	24,49 646	646,65 18,56	56 646,68	20,7	646,37
05.09.2013	3 24,50	647,52	29,18	646,64	24,08	646,61							4,19 63	636,25	21,12 646	646,52	24,67 646,47	,47 18,75	75 646,49	30,0	646,47
20.09.2013	3 24,58	647,44	29,37	646,45	24,25	646,44							3,87 63	636,57	21,28 646	646,36	24,88 646,26	,26 18,93	93 646,31	20,83	646,24
01.10.2013	3 24,64	647,38	29,48	646,34	24,38	646,31							3,88 63	92'989	21,41 646	646,23 24	24,95 646,19	19,03	03 646,21	20,90	646,17
17.10.2013	3 24,67	647,35	29,54	646,28	24,40	646,29							3,25 63	637,19	21,45 646	646,19	25,03 646,11	11, 19,09	09 646,15	5 20,93	646,14
29.10.2013	3 24,65	647,37	29,52	646,3	24,41	646,28							3,75 63	69'989	21,45 646	646,19 25	25,02 646,12	,12 19,08	08 646,16	5 20,93	646,14
18.11.2013	3 24,67	647,35	29,52	646,3	24,40	646,29							3,67 63	636,77	21,45 646	646,19	25,00 646	646,14 19,07	07 646,17	7 20,92	646,15
02.12.2013	3 24,70	647,32	29,54	646,28	24,42	646,27							3,74 6	636,7	21,47 646	646,17 25	25,03 646,11	01,61 11,	10 646,14	1 20,95	646,12
16.12.2013	3 24,72	647,3	29,57	646,25	24,46	646,23							3,90 63	636,54	21,50 646	646,14 25	25,06 646	646,08 19,13	13 646,11	19,98	647,09
02.01.2014	1 24,78	647,24	29,76	646,06	24,65	646,04	23,45	645,95		29,16	646,26		4,00 63	636,44	21,68 645	645,96 25	25,65 645,49	,49 19,30	30 645,94	1 21,17	642,9
16.01.2014	1 24,80	647,22	29,87	642,95	24,74	645,95	23,53	645,87		29,25	646,17		3,80 63	636,64	21,78 645	645,86	25,34 64	645,8 19,40	40 645,84	1 21,25	645,82
24.01.2014	-		29,83	642,99	24,69	646	23,34	90'949													
25.01.2014	-		29,81	646,01	24,68	646,01	23,32	646,08													
26.01.2014	-		29,81	646,01	24,68	646,01	23,31	646,09													
27.01.2014	-		29,79	646,03	24,67	646,02	23,31	646,09													
28.01.2014			29,78	646,04	24,65	646,04	23,29	646,11													
30.01.2014	1 24,79	647,23	29,78	646,04	24,65	646,04	23,29	646,11		29,16	646,26		3,60 63	636,84	21,70 645	645,94	25,26 645,88	,88 19,32	32 645,92	21,18	645,89
13.02.2014	-		29,64	646,18	24,51	646,18	24,26	646,19	1,10	30,18	646,3	1,15	3,70 63	636,74	21,57 646	646,07	25,14 (646 19,18	18 646,06	5 21,03	646,04
03.03.2014	1 24,74	647,28	29,62	646,17	24,54	646,15	24,27	646,18		30,21	646,27		3,9 63	636,54	21,58 646	646,06	25,14 (646 19,2	9,2 646,04	1 21,06	646,01
17.03.2014	-		29,75	646,07	24,63	646,06	24,37	646,08		30,31	646,17		4,01 63	636,43	21,67 645	645,97	25,24 64	645,9 19,3	9,3 645,94	1 21,15	645,92
08.04.2014	1 24,83	647,19	29,87	645,95	24,75	645,94	24,48	645,97		30,43	646,05		4,01 63	636,43	21,75 645	645,89	25,36 645,78	,78 19,42	42 645,82	21,27	645,8
17.04.2014	1 24,84	647,18	29,9	645,92	24,79	642,9	24,52	645,93		30,47	646,01		4,03 63	636,41	21,83 645	645,81 25	25,39 645,75	,75 19,45	45 645,79	3 21,3	645,77
15.05.2014	1 24,9	647,12	30'08	645,74	24,97	645,72	24,7	645,75		30,65	645,83		4,17 63	636,27	22 645	645,64	25,57 645,57	,57 19,63	63 645,61	21,48	645,59
30.05.2014	1 24,92	647,1	30,16	645,66	25,04	645,65	24,77	645,68		30,73	645,75				22,08 645	645,56 25	25,64 64	645,5 19,72	72 645,52	21,55	645,52
17.06.2014				645,57		645,56	24,86	642,59		30,82	645,66				22,15 645	645,49 25	25,73 645,41	,41 19,79	79 645,45	5 21,64	645,43
08.07.2014	1 24,98	647,04	30,37	645,45	22,25	645,44	24,98	645,47		30,94	645,54				22,28 645	645,36 25	25,84 64	645,3 19,9	9,9 645,34	1 21,76	645,31
21.07.2014	1 25	647,02	30,43	642,39	25,31	645,38	25,04	645,41		31	645,48				22,34 64	645,3	25,9 645	645,24 19,96	96 645,28	3 21,82	645,25
	Pegel trocken	ken	To the second second	Endausbau	Endausbau Überflurabschluss	pschluss															

Grundwasserganglinien der beobachteten Grundwassermessstellen ohne Dies 001

CRYSTAL GEOTECHNIK GmbH, Beratende Ingenieure und Geologen, Hofstattstr. 28, 86919 Utting am Ammersee, Te.: 08806-95894-0

Grundwasserganglinien der beobachteten Grundwassermessstellen

CRYSTAL GEOTECHNIK GmbH, Beratende Ingenieure und Geologen, Hofstattstr. 28, 86919 Utting am Ammersee, Te.: 08806-95894-0

BERATENDE INGENIEURE & GEOLOGEN GMBH

ANLAGE (6)

AUSWERTUNG DER PUMPVERSUCHE

Berechnung des Durchlässigkeitsbeiwertes aus einem Pumpversuch für Brunnen mit freiem Grundwasser-Spiegel

(ohne Vorfeldmeßstellen bei gleichbleibender Entnahmemenge)

Präzisierung Brunnenstandort

Projekt: Obermühlhausen Datum: 22.07.2014

Projektnummer: H13206 Brunnen: Thai 041

EINGANGSPARAMETER

Entnahmemenge:	Q=	0,003	m^3/s
Gw-Mächtigkeit:	H=	4,00	m
Absenkung bei Q:	S==	0,1	m
Aquifermächt.:	m=	4,00	m
Abges.GW-Mächtigkeit bei Q:	h=	3,9	m
Bohrdurchmesser:	D=	0,24	m
Radius des Absenktrichters bei Q1:	Rk =	10,0221	m nach KUSAKIN
Radius des Absenktrichters bei Q1:	Rs =	26,1447	m nach SICHARDT
Radius des Brunnens:	r =	0,15	m

Kf-Wert nach DAHLHAUS:
$$k_{f_1} = \frac{Q}{(h + \frac{s}{2}) * s}$$
kfl= 7,59E-03 m/s

Kf-Wert nach DUPUIT-THIEM: $k_{f_1} = \frac{Q^* \ln \frac{R_s}{r}}{\pi^* (H^2 - h^2)}$

kfl = 6,24E-03 m/s

Berechnung des Durchlässigkeitsbeiwertes aus einem Pumpversuch für Brunnen mit freiem Grundwasser-Spiegel

(ohne Vorfeldmeßstellen bei gleichbleibender Entnahmemenge)

Präzisierung Brunnenstandort

Projekt: Obermühlhausen Datum: 22.07.2014

Projektnummer: H13206 Brunnen: Thai 040

EINGANGSPARAMETER

Q==	0,0089	m^3/s
H=	6,01	m
s=	0,15	m
m=	6,01	m
h=	5,86	m
D=	0,24	m
Rk =	21,1415	m nach KUSA
	H= s= m= h= D=	H= 6,01 s= 0,15 m= 6,01 h= 5,86 D= 0,24

Radius des Absenktrichters bei Q1: Rk = 21,1415 m nach KUSAKIN
Radius des Absenktrichters bei Q1: Rs = 44,9937 m nach SICHARDT

Radius des Brunnens: r = 0,15 m

Kf-Wert nach DAHLHAUS:
$$kf_1 = \frac{Q}{(h + \frac{s}{2}) * s}$$
kfl= 1,00E-02 m/s

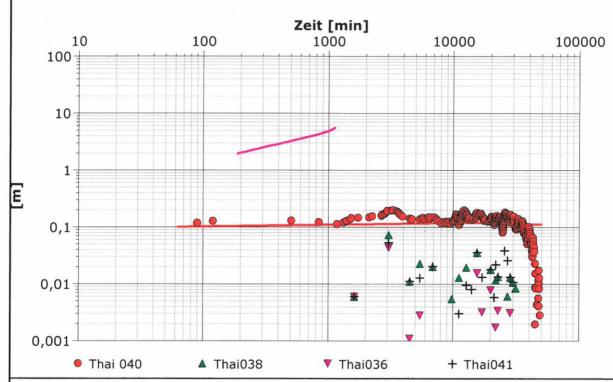
Kf-Wert nach DUPUIT-THIEM:
$$k_{f_1} = \frac{Q * \ln \frac{R_s}{r}}{\pi * (H^2 - h^2)}$$

kfl = 9,07E-03 m/s

Beratende Ingenieure und Geologen GmbH Hofstattstraße 28

86919 Utting am Ammersee

e-mail: utting@crystal-geotechnik.de


Pumpversuchsauswertung

Projekt: Präzisierung Brunnenstandort Obermühlhausen

Projekt-Nr: H13206

Auftraggeber: Gemeinden Thaining und Hofstetten

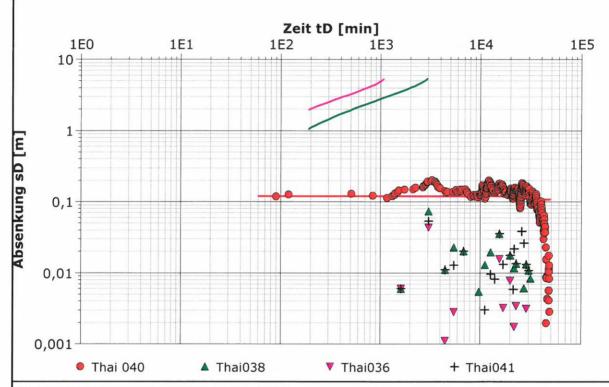
Ort: Obermühlhausen	Pumpversuch: Thai 040	Pumpbrunnen: Thai 040
Durchgeführt von: Eder Brunner	nbau GmbH	Versuchsdatum: 18.12.2013
Bearbeiter: S. Krause	Theis	Datum: 22.07.2014
Aquifermächtigkeit: 6,01 m	Förderrate: variabel, Ø 9,4234	[l/s]

Berechnungsergebnisse na	ch THEIS mit Jacob-Kor	rektur		
Beobachtungsbrunnen	Transmissivität [m²/s]	Hydraul. Durchlässigkeit [m/s]	Speicherkoeffizient	Abstand zum Pumpbr. [m]
Thai 040	2,32 × 10 ⁻¹	3,85 × 10 ⁻²	1,00 × 10 ⁻⁷	0,04
Thai038	1,00 × 10 ¹	1,66 × 10 ⁰	1,53 × 10 ⁻¹	299,4
Thai036	1,00 × 10 ⁻³	1,66 × 10 ⁻⁴	1,00 × 10 ⁻⁴	181,84
Thai041	1,00 × 10 ¹	1,66 × 10 ⁰	5,00 × 10 ⁻¹	490,31
Durchschnitt	5,06 × 10 ⁰	8,42 × 10 ⁻¹	1,63 × 10 ⁻¹	

Beratende Ingenieure und Geologen GmbH Hofstattstraße 28

86919 Utting am Ammersee

e-mail: utting@crystal-geotechnik.de


Pumpversuchsauswertung

Präzisierung Brunnenstandort Obermühlhausen Projekt:

Projekt-Nr: H13206 6.2.2

Auftraggeber: Gemeinden Thaining und Hofstetten

Ort: Obermühlhausen	Pumpversuch: Thai 040	Pumpbrunnen: Thai 040
Durchgeführt von: Eder Brunnenl	oau GmbH	Versuchsdatum: 18.12.2013
Bearbeiter: S. Krause	Theis negative Randbed.	Datum: 22.07.2014
Aquifermächtigkeit: 6,01 m	Förderrate: variabel, Ø 9,4234	[l/s]

Berechnungsergebnisse na Beobachtungsbrunnen	Transmissivität	Hydraul.	Speicherkoeffizie	Р	Abstand zum
		Durchlässigkeit			Pumpbr.
	[m²/s]	[m/s]			[m]
Thai 040	1,31 × 10 ⁻²	2,18 × 10 ⁻³	-6,39 × 10 ²⁷	5,83 × 10 ³	0,04
Thai038	1,00 × 10 ⁻³	1,66 × 10 ⁻⁴	1,00 × 10 ⁻⁴	1,00 × 10 ²	299,4
Thai036	1,00 × 10 ⁻³	1,66 × 10 ⁻⁴	1,00 × 10 ⁻⁴	1,00 × 10 ²	181,84
Thai041	1,00 × 10 ¹	1,66 × 10 ⁰	5,00 × 10 ⁻¹	9,30 × 10 ⁵	490,31
Durchschnitt	2,50 × 10 ⁰	4,17 × 10 ⁻¹	-1,60 × 10 ²⁷	2,34 × 10 ⁵	

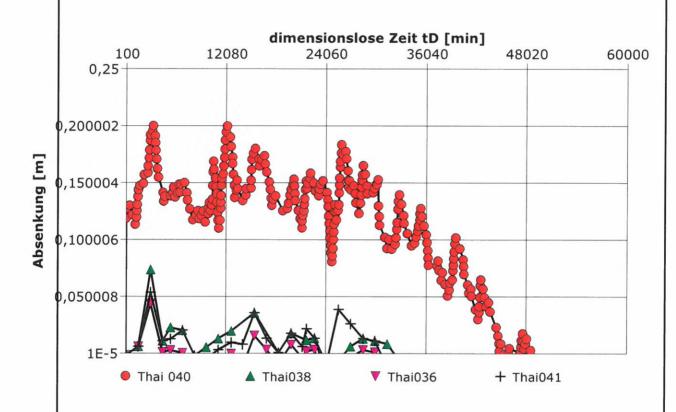
Beratende Ingenieure und Geologen GmbH

Hofstattstraße 28

86919 Utting am Ammersee

e-mail: utting@crystal-geotechnik.de

Pumpversuchsauswertung


Projekt: Präzisierung Brunnenstandort Obermühlhausen

Projekt-Nr: H13206

6.2.0

Auftraggeber: Gemeinden Thaining und Hofstetten

Ort: Obermühlhausen	Pumpversuch: Thai 040	Pumpbrunnen: Thai 040
Durchgeführt von: Eder Brunner	nbau GmbH	Versuchsdatum: 18.12.2013
Bearbeiter: S. Krause	Alle Ganglinie	Datum: 29.07.2014
Aguifermächtigkeit: 6.01 m	Förderrate: variabel Ø 9 4234	[]/e]

COVET	A I /	· = ^ :	TEAL	JHIL
CRYST	AL (3EU	IEUI	חואור

BERATENDE INGENIEURE & GEOLOGEN GMBH

ANLAGE (7)

TABELLE SCHUTZFUNKTION DER GRUNDWASSERÜBERDECKUNG NACH HÖLTING/VERWEILZEIT NACH REHSE

Tabelle Schutzfunktion der Grundwasserüberdeckung nach Hölting / Verweilzeit nach Rehse mit Reinigungswirkung

Bohrung		Schichthorizo	nt		Schutzfu	nktion na	ch Hölting		Verweilzeit nach Rehse					Reinigungwirkung nach Rehse				
	Ausbildung	bis muGOK	Mächtigkeit m	Punktzahl pro lfm	Punktza Schichtp		Faktor W	Gesamtpunkt zahl nach Hölting	Abstandgesch windigkeit bei Teilsättigung m/d	Mächtigkeit m	Aufenthalts zeit d		wirksame Mächtigkeit m	Reinigungin dex I	Reinigungsgr Md	ad		
Thai 040	Mu	0,3	0,3										0,2	0,80	0,16			
	U,t,g'-g,s'-s	7,2	6,9	160	1104				0,16	6,2	39,00		6,9	0,40	2,76	_		
	G,s-s*,u,t	14,2	7	75	525				0,72	7	10,00	T 50	7	0,13	0,91	- 		
	G,s-s*,u', teils u, verbacken, Nagelfluh	23,06	8,86	60	531,6	∑ 2161	1	2161	2,52	8,86	4	∑ 53	8,86	0,08	0,71	- ∑4,54		
Thai 041	Mu	0,80	0,80										0,8	0,80	0,64	200		
	U,g-g',s'	12,10	11,30	120	1356	– ∑ 2376	1 _	2376	0,54	11,1	21	Z 30	11,3	0,40	4,52	Σ 9,04		
	G,s-s*,u'-u	29,1	17	60	1020	_ 2 2376			2,52	17	8	∑ 29	29,1	0,13	3,88			

^	~ \	10	-			\sim	_	\sim	~ ~	^		•	13	1
u	KI	ГЭ		м	L	G	E	U	TE	u	п	P	H	n

BERATENDE INGENIEURE & GEOLOGEN GMBH

ANLAGE (8)

WASSERCHEMISCHE ANALYSEN

Anlage: 8,1

Probenahmeprotokoll für Wasser mit Tauchpumpe

Ergänzende Präzisierung Brunnenstandort

Projektbezeichnung: Obermühlhausen

Projekt -Nr.: H13206

Auftraggeber: Gemeinden Hofstetten und Thaining

Angaben zur Lage: Flur-Nr.: 1485

Gemeinde: Thaining Ortsteil: Thaining

Entnahmestelle: Thai 040 nach Beginn des Pumpversuchs

Eigentümer: Gemeinde Thaining

Probenehmer: SK Datum: 19.12.2013

		1 1	1
Angaben zur Probe:			
Entnahmestelle:		Thai 040	
Probenbezeichnung:	ļ	Thai 040	
Art der Probenahmestelle:		Pegel	
Durchmesser:	Zoll/mm	6" / 150	
Ausbautiefe:	muPOK	30	
Filter von-bis:	muPOK	22,00-30,00	
Geländeoberkante:	mNN	669,396	
Pegeloberkante:	mNN	669,80 (temporäre POK)
Ruhewasserspiegel u. POK:	m	23,09	
Ruhewasserspiegel:	mNN	646,31	
Wetter/Lufttemperatur:		1°C/bewölkt	
Gerät:		Grundfoss	
Entnahmetiefe:	muPOK	29,7	
Förderstrom:	l/s	9,75	
Förderdauer vor Probenahme:	h	22	
Uhrzeit der Probenahme:		09:40	
Wasserstand bei Probenahme u. POK:	m	23,26	
Vor Ort Parameter:			
Färbung:		keine	
Trübung:		keine	
Geruch:		kein	
Temperatur:	°C	9	
Leitfähigkeit:	μS/m	641	
pH-Wert:		7,41	

Anlage: &. 2

Probenahmeprotokoll für Wasser mit Tauchpumpe

Ergänzende Präzisierung Brunnenstandort

Projektbezeichnung: Obermühlhausen

Projekt -Nr.: H13206

Auftraggeber: Gemeinden Hofstetten und Thaining

Angaben zur Lage: Flur-Nr.: 1485

Gemeinde: Thaining Ortsteil: Thaining
Entnahmestelle: Thai 040 ca. Mitte des Pumpversuchs

Eigentümer: Gemeinde Thaining

Probenehmer: SK Datum: 02.01.2014

		1 1	1
Angaben zur Probe:	·		
Entnahmestelle:		Thai 040	
Probenbezeichnung:		Thai 040	
Art der Probenahmestelle:		Pegel	
Durchmesser:	Zoll/mm	6" / 150	
Ausbautiefe:	muPOK	30	
Filter von-bis:	muPOK	22,00-30,00	
Geländeoberkante:	mNN	669,396	
Pegeloberkante:	mNN	669,80 (temporäre P	ок)
Ruhewasserspiegel u. POK:	m	23,09	
Ruhewasserspiegel:	mNN	646,31	
Wetter/Lufttemperatur:		2°C/bewölkt	
Gerät:		Grundfoss	
Entnahmetiefe:	muPOK	29,7	
Förderstrom:	l/s	9,76	
Förderdauer vor Probenahme:	Tage	15	
Uhrzeit der Probenahme:		11:30	
Wasserstand bei Probenahme u. POK:	m	23,84	
Vor Ort Parameter:			
Färbung:		keine	
Trübung:		keine	
Geruch:		kein	
Temperatur:	°C	8,9	
Leitfähigkeit:	μS/m	639	
pH-Wert:		7,42	

Crystal Geotechnik

Anlage: & 3

Probenahmeprotokoll für Wasser mit Tauchpumpe

Ergänzende Präzisierung Brunnenstandort

Projektbezeichnung: Obermühlhausen

Projekt -Nr.: H13206

Auftraggeber: Gemeinden Hofstetten und Thaining

Angaben zur Lage: Flur-Nr.: 1485

Gemeinde: Thaining Ortsteil: Thaining

Entnahmestelle: Thai 040 vor Ende des Pumpversuchs

Eigentümer: Gemeinde Thaining

Probenehmer: SK Datum: 22.01.2014

		1	i
Angaben zur Probe:			
Entnahmestelle:		Thai 040	
Probenbezeichnung:	ļ	Thai 040	
Art der Probenahmestelle:		Pegel	
Durchmesser:	Zoll/mm	6" / 150	
Ausbautiefe:	muPOK	30	
Filter von-bis:	muPOK	22,00-30,00	
Geländeoberkante:	mNN	669,396	
Pegeloberkante:	mNN	669,80 (temporäre POK)	
Ruhewasserspiegel u. POK:	m	23,09	
Ruhewasserspiegel:	mNN	646,31	
Wetter/Lufttemperatur:		2°C/bewölkt	
Gerät:		Grundfoss	
Entnahmetiefe:	muPOK	29,7	
Förderstrom:	l/s	8,9	
Förderdauer vor Probenahme:	Tage	35	
Uhrzeit der Probenahme:		14:00	
Wasserstand bei Probenahme u. POK:	m	23,91	
Vor Ort Parameter:			
Färbung:		keine	
Trübung:		keine	
Geruch:		kein	
Temperatur:	°C	9,2	
Leitfähigkeit:	μS/m	640	
pH-Wert:		7,39	

Probenahmeprotokollwasser

Anlage: 8.4

Probenahmeprotokoll für Wasser mit Tauchpumpe

Ergänzende Präzisierung Brunnenstandort

Projektbezeichnung: Obermühlhausen

Projekt -Nr.: H13206

Auftraggeber: Gemeinden Hofstetten und Thaining

Angaben zur Lage: Flur-Nr.: 1511

Gemeinde: Thaining Ortsteil: Thaining

Entnahmestelle: Thai 041

Eigentümer: Gemeinde Thaining

Probenehmer: SK Datum: 17.12.2013

		1	I I
Angaben zur Probe:	T		
Entnahmestelle:		Thai 041	
Probenbezeichnung:		Thai 041	
Art der Probenahmestelle:		Pegel	
Durchmesser:	Zoll/mm	6" / 150	
Ausbautiefe:	muPOK	34	
Filter von-bis:	muPOK	28,00-34,00	
Geländeoberkante:	mNN	675,42	
Pegeloberkante:	mNN	676,48	
Ruhewasserspiegel u. POK:	m	29,1	
Ruhewasserspiegel:	mNN	647,38	
Wetter/Lufttemperatur:	4	°C/ leicht bewö	lkt
Gerät:		Grundfoss	
Entnahmetiefe:	muPOK	29,7	
Förderstrom:	l/s	3	
Förderdauer vor Probenahme:	h	2,5	
Uhrzeit der Probenahme:		16:20	
Wasserstand bei Probenahme u. POK:	m	29,19	
Vor Ort Parameter:			
Färbung:		keine	
Trübung:		keine	
Geruch:		kein	
Temperatur:	°C	9,7	
Leitfähigkeit:	μS/m	715	
pH-Wert:		7,14	

Crystal Geotechnik

Niederlassung der AGROLAB-Labor GmbH, Bruckberg Moosstraße 6 a, 82279 Eching am Ammersee, Germany www.agrolab.de

Dr.Blasy-Dr.Busse Moosstr. 6A, 82279 Eching

CRYSTAL GEOTECHNIK GMBH HOFSTATTSTR. 28 86919 UTTING

Datum

30.12.2013

Kundennr.

4100010502

Seite 1 von 3

PRÜFBERICHT 557543 - 386185

Auftrag

557543 Projekt H13206

Analysennr.

386185 Wasser

Projekt

14481 An

Angebot 97120366 // Alternativstandort

Obermühlhausen H 12152

Probeneingang

19.12.2013

Thai 040

Probenahme Probenehmer 19.12.2013 09:40

Kunden-Probenbezeichnung

Auftraggeber

Probenart

Grundwasser

	Einheit	Ergebnis	BestGr.	Grenzwert	Methode
Vor-Ort-Untersuchungen					
Ruhewasserspiegel (POK)	m	23,09	ſ <i>-</i> /	Ţ	
Förderdauer in Stunden	h	22,00			
Förderstrom	l/sec	9,75			
Entnahmetiefe	m	24,00			
Absenkung zum PN-Zeitp.u.RW	m	0,12			V-0-01-01-01-01-01-01-01-01-01-01-01-01-0
Färbung (vor Ort)		farblos			EN ISO 7887-C1
Trübung (vor Ort)		klar			EN ISO 7887-C1
Geruch (vor Ort)		geruchlos		<u> </u>	DEV B1/2
Wetter am Entnahmetag		1 °C, bewölkt			
Gerät		U-Pumpe			
pH-Wert (vor Ort)		7,41	C		DIN 38404-C5
Leitfähigkeit (vor Ort) bei 25°C	μS/cm	641	10		EN 27888 (C8)
Wassertemperatur (vor Ort)	°C	9,0	0,1		DIN 38404-C4
Physikalisch-chemische Par	ameter				THE PARTY OF THE P
Trübung (NTU)	NTU	0,17	0,01	T	DIN EN ISO 7027-C2
oH-Wert (Labor)		7,23	0		DIN 38404-C5
Leitfähigkeit bei 20 °C (Labor)	µS/cm	575	10		EN 27888 (C8)
Leitfähigkeit bei 25 °C (Labor)	µS/cm	642	10		EN 27888 (C8)
Temperatur (Labor)	°C	16,0	0,1		DIN 38404-C4
SAK 436 nm	m-1	4,6	1		DIN EN ISO 7887-C1
Kationen		The first section of the section of			
Calcium (Ca)	mg/l	103	1		DIN EN ISO 11885-E22
Kalium (K)	mg/l	<1,0	1		DIN EN ISO 11885-E22
Magnesium (Mg)	mg/l	30,2	1		DIN EN ISO 11885-E22
Natrium (Na)	mg/l	4,1	1		DIN EN ISO 11885-E22
Anionen			~		
Chlorid (CI)	mg/l	2.6	1	T	E DIN ISO 15923-1 (D42)

Niederlassung der AGROLAB-Labor GmbH, Bruckberg Moosstraße 6 a, 82279 Eching am Ammersee, Germany www.agrolab.de

Your labs. Your service.

Datum

30.12.2013

Kundennr.

4100010502

Seite 2 von 3

PRÜFBERICHT 557543 - 386185

	Einheit	Ergebnis	BestGr.	Grenzwert	Methode
Fluorid (F)	mg/l	0,065	0,02	The second secon	DIN EN ISO 10304-1 (D19)
Nitrat (NO3)	mg/l	5,3	1		E DIN ISO 15923-1 (D42)
Nitrit (NO2)	mg/l	<0,020	0,02		E DIN ISO 15923-1 (D42)
Sulfat (SO4)	mg/l	10	1		E DIN ISO 15923-1 (D42)
Säurekapazität bis pH 4,3	mmol/l	7,08	0,1		DIN 38409-H7-1
Cyanide ges.	mg/l	<0,005	0,005		DIN EN ISO 14403
Summarische Parameter					The second secon
TOC	mg/l	1.3	0,5	T	DIN EN 1484
DOC	mg/l	1,1	0,5		DIN EN 1484
Anorganische Bestandteil			·		
Aluminium (Al)	mg/l	<0,050	0,05		DIN EN ISO 11885-E22
Arsen (As)	mg/l	<0.005	0,005		DIN EN ISO 11885-E22
Antimon (Sb)	mg/l	<0,0005		÷	DIN EN ISO 17294-2 (E29)
Blei (Pb)	mg/l	<0,005	0,005	-	DIN EN ISO 11885-E22
Bor (B)	mg/l	<0,000	0,000		DIN EN ISO 11885-E22
Cadmium (Cd)	mg/l	<0,0005	0,0005		DIN EN ISO 11885-E22
Chrom (Cr)	mg/l	<0,005	0,005	+	DIN EN ISO 11885-E22
Eisen (Fe)	mg/l	0,014	0,01		DIN EN ISO 11885-E22
Kupfer (Cu)	mg/l	0,007	0,005		DIN EN ISO 11885-E22
Mangan (Mn)	mg/l	<0,010	0,01		DIN EN ISO 11885-E22
Nickel (Ni)	mg/l	<0,010	0,01		DIN EN ISO 11885-E22
Quecksilber (Hg)	mg/l	<0,0002	0,0002		DIN EN 1483-E12-4
Selen (Se)	mg/l	<0,0020	0,002		DIN EN ISO 17294-2 (E29)
Gasförmige Komponenter				.4	
Sauerstoff (O2) gel.	mg/l	4,7	0,1	T	DIN EN 25813 - G21
Basekapazität bis pH 8,2	mmol/I	0,92	0,1		DIN 38409-H7-4-1
Leichtflüchtige Halogenko			<u>V</u> !!	المستحد مستحد المستحد	D114 00400-117-4-1
1,2-Dichlorethan	µg/l	<0,2	0,2	1	DIN EN ISO 10301 (F 4-2)
Trichlormethan	h8\/I	<0,1	0,1		DIN EN ISO 10301 (F 4-2)
Trichlorethen	μg/l	<0,1	0,1	 	DIN EN ISO 10301 (F 4-2)
Tetrachlorethen	μg/l	<0,1	0,1		DIN EN ISO 10301 (F 4-2)
Tribrommethan	µg/l	<0.3	0,3		DIN EN ISO 10301 (F 4-2)
Dibromchlormethan	μg/l	<0.2	0,2		DIN EN ISO 10301 (F 4-2)
Bromdichlormethan	μg/l	<0,3	0,2		DIN EN ISO 10301 (F 4-2)
LHKW - Summe	μg/l	0	-,-	 	DIN EN ISO 10301 (F 4-2)
BTEX-Aromaten					
Benzol	μg/l	<0,1	0,1	T	DIN 38407-F9-1 (GC/MS
Polycyclische aromatisch				+	
Benzo(b)fluoranthen	μg/l	<0,005	0,005		EN ISO 17993 (F18)
Benzo(k)fluoranthen	μg/l	<0,005	0,005	 	EN ISO 17993 (F18)
Benzo(a)pyren	hā\l	<0,005	0,005	†	EN ISO 17993 (F18)
Benzo(ghi)perylen	µg/l	<0,005	0,005	†	EN ISO 17993 (F18)
Indeno(1,2,3-cd)pyren	µg/l	<0,005	0,005	 	EN ISO 17993 (F18)

Pflanzenbehandlungs- und Schädlingsbekämpfungsmittel (PSM)

Niederlassung der AGROLAB-Labor GmbH, Bruckberg Moosstraße 6 a, 82279 Eching am Ammersee, Germany www.agrolab.de

Your labs. Your service.

Datum

30.12.2013

Kundennr.

4100010502

Seite 3 von 3

PRÜFBERICHT 557543 - 386185

	Einheit	Ergebnis	BestGr.	Grenzwert	Methode
Atrazin	µg/l	<0,03 (NWG)	0,05	T	EN ISO 11369 (F12) LC/MS
Desethylatrazin	μg/l	<0,05 (+)	0,05		EN ISO 11369 (F12) LC/MS
Desethylterbuthylazin	µg/l	<0,03 (NWG)	0,05		EN ISO 11369 (F12) LC/MS
Desisopropylatrazin	µg/l	<0,03 (NWG)	0,05		EN ISO 11369 (F12) LC/MS
Propazin	μg/l	<0,03 (NWG)	0,05		EN ISO 11369 (F12) LC/MS
Sebuthylazin	μg/i	<0,03 (NWG)	0,05		EN ISO 11369 (F12) LC/MS
Simazin	µg/i	<0,03 (NWG)	0,05		EN ISO 11369 (F12) LC/MS
Terbuthylazin	µg/l	<0,03 (NWG)	0,05		EN ISO 11369 (F12) LC/MS
Berechnete Werte		* Pro 40 (10 to 10 to			
Ionenbilanz	%	4,6			
Härtebereich		3	0		
Gesamthärte	°dH	21,3	0,3		DIN 38406-E22
Gesamthärte	mmol/l	3,8	0,1		DIN EN ISO 11885-E22
Carbonathärte	°dH	19,8	0,3		
pH-Wert n.Carbonats.		7,17	0		
Sättigungs-pH (n.Langelier)		7,12	0		berechnet
Delta-pH-Wert: pH(ber.) - pHC		0,10			
Sättigungsindex		0,16			
Kohlenstoffdioxid, gelöst	mg/l	40,5	4		
Kohlenstoffdioxid, gebunden	mg/l	160			
Calcitlösekapazität (CaCO3)	mg/l	-17	s		DIN 38404-C10-3
Sonstige Untersuchungspar	ameter				
Bromat (BrO3)	µg/l	<2,000 (NWG)	5		DIN EN ISO 15061 - D34
Uran (U)	mg/l	0,00090	0,0001		DIN EN ISO 17294-2 (E29)

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Das Zeichen "<....(NWG)" oder n.n. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Nachweisgrenze nicht nachzuweisen.

Das Zeichen "<....(+)" in der Spalte Ergebnis bedeutet, der betreffende Stoff wurde im Bereich zwischen Nachweisgrenze und Bestimmungsgrenze qualitativ nachgewiesen.

Hinweis zu Desisopropylatrazin:

= Desethylsimazin (=Atrazin-desisopropyl)

Dr.Blasy-Dr.Busse Herr Dr. Gunter, Tel. 08143/79-135 FAX: 08143/7214, E-Mail: Stefan.Guenter@agrolab.de Kundenbetreuung

Beginn der Prüfungen: 19.12.2013 Ende der Prüfungen: 30.12.2013

Die Prüfergebnisse beziehen sich ausschließlich auf die Prüfgegenstände. Bei Proben unbekannten Ursprungs ist eine Plausibilitätsprüfung nur bedingt möglich. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig.

Niederlassung der AGROLAB-Labor GmbH, Bruckberg Moosstraße 6 a. 82279 Eching am Ammersee, Germany www.agrofab.de

Your labs. Your service.

8. l

Dr.Blasy-Dr.Busse Moosstr. 6A, 82279 Eching

CRYSTAL GEOTECHNIK GMBH HOFSTATTSTR. 28 86919 UTTING

Datum

14.01.2014

Kundennr.

4100010502

Seite 1 von 3

Methode

PRÜFBERICHT 561301 - 389802

Auftrag 561301 Projekt H13206

Einheit

Analysennr. 389802 Wasser

Projekt 14481 Angebot 97120366 // Alternativstandort

Obermühlhausen H 12152

Ergebnis Best.-Gr. Grenzwert

Probeneingang 03.01.2014
Probenahme 02.01.2014
Probenehmer Auftraggeber
Kunden-Probenbezeichnung Thai 040, Mitte PV
Probenart Grundwasser

Ruhewasserspiegel (POK)	m	23,09		
Förderdauer in Stunden	h	36,00		
Förderstrom	1/sec	9,76		
Entnahmetiefe	m	29,70		
Absenkung zum PN-Zeitp.u.RW	m	0,75		
Färbung (vor Ort)		farblos		EN ISO 7887-C1
Trübung (vor Ort)		klar		EN ISO 7887-C1
Geruch (vor Ort)		geruchlos		DEV B1/2
Wetter am Entnahmetag		2 °C, bewölkt		
Gerät		U-Pumpe		
pH-Wert (vor Ort)		7,42	0	DIN 38404-C5
Leitfähigkeit (vor Ort) bei 25°C	μS/cm	639	10	EN 27888 (C8)
Wassertemperatur (vor Ort)	°C	8,9	0,1	DIN 38404-C4

DIN EN ISO 7027-C2 Trübung (NTU) NTU 0,11 0,01 pH-Wert (Labor) 0 DIN 38404-C5 7,27 Leitfähigkeit bei 20 °C (Labor) µS/cm 10 EN 27888 (C8) 584 Leitfähigkeit bei 25 °C (Labor) µS/cm 10 EN 27888 (C8) 652 °C 0,1 DIN 38404-C4 Temperatur (Labor) 14.0 **DIN EN ISO 7887-C1** SAK 436 nm 1 m-1 <1.0

Kationen				
Calcium (Ca)	mg/l	107	1	DIN EN ISO 11885-E22
Kalium (K)	mg/l	<1,0	1	DIN EN ISO 11885-E22
Magnesium (Mg)	mg/l	29,8	1	DIN EN ISO 11885-E22
Natrium (Na)	mg/l	2,9	1	DIN EN ISO 11885-E22
Anionen				
Chlorid (CI)	mg/l	3.8	1	E DIN ISO 15923-1 (D42)

Niederlassung der AGROLAB-Labor GmbH, Bruckberg Moosstraße 6 a, 82279 Eching am Ammersee, Germany www.agrolab.de

Your labs. Your service.

Datum

14.01.2014

Kundennr.

4100010502

Seite 2 von 3

PRÜFBERICHT 561301 - 389802

	Einheit	Ergebnis	BestGr. Grenzwert	Methode
Fluorid (F)	mg/l	0,084	0,02	DIN EN ISO 10304-1 (D19
Nitrat (NO3)	mg/l	6,3	1	E DIN ISO 15923-1 (D42)
Nitrit (NO2)	mg/l	<0,020	0,02	E DIN ISO 15923-1 (D42)
Sulfat (SO4)	mg/l	9,2	1	E DIN ISO 15923-1 (D42)
Säurekapazität bis pH 4,3	mmol/I	7,00	0,1	DIN 38409-H7-1
Cyanide ges.	mg/l	<0,005	0,005	DIN EN ISO 14403
Summarische Parameter				
TOC	mg/l	1,0	0,5	DIN EN 1484
DOC	mg/t	0,68	0,5	DIN EN 1484
Anorganische Bestandteil	е			
Aluminium (Al)	mg/l	<0,050	0,05	DIN EN ISO 11885-E22
Arsen (As)	mg/l	<0,005	0,005	DIN EN ISO 11885-E22
Antimon (Sb)	mg/l	<0,0005	0,0005	DIN EN ISO 17294-2 (E29
Blei (Pb)	mg/l	<0,005	0,005	DIN EN ISO 11885-E22
Bor (B)	mg/l	<0,020	0,02	DIN EN ISO 11885-E22
Cadmium (Cd)	mg/l	<0,0005	0,0005	DIN EN ISO 11885-E22
Chrom (Cr)	mg/l	<0,005	0,005	DIN EN ISO 11885-E22
Eisen (Fe)	mg/l	<0,010	0,01	DIN EN ISO 11885-E22
Kupfer (Cu)	mg/l	<0,005	0,005	DIN EN ISO 11885-E22
Mangan (Mn)	mg/l	<0,010	0,01	DIN EN ISO 11885-E22
Nickel (Ni)	mg/l	<0,010	0,01	DIN EN ISO 11885-E22
Quecksilber (Hg)	mg/l	<0,0002	0,0002	DIN EN 1483-E12-4
Selen (Se)	mg/l	<0,0020	0,002	DIN EN ISO 17294-2 (E29
Gasförmige Komponenter	1			
Sauerstoff (O2) gel.	mg/l	6,4	0,1	DIN EN 25813 - G21
Basekapazität bis pH 8,2	mmol/l	0,66	0,1	DIN 38409-H7-4-1
Leichtflüchtige Halogenko	hlenwasserstoffe	•		
1,2-Dichlorethan	μg/l	<0,2	0,2	DIN EN ISO 10301 (F 4-2)
Trichlormethan	μg/l	<0,1	0,1	DIN EN ISO 10301 (F 4-2)
Trichlorethen	μg/l	<0,1	0,1	DIN EN ISO 10301 (F 4-2)
Tetrachlorethen	μg/l	<0,1	0,1	DIN EN ISO 10301 (F 4-2)
Tribrommethan	µg/l	<0,3	0,3	DIN EN ISO 10301 (F 4-2)
Dibromchlormethan	µg/l	<0,2	0,2	DIN EN ISO 10301 (F 4-2)
Bromdichlormethan	μg/l	<0,3	0,3	DIN EN ISO 10301 (F 4-2)
LHKW - Summe	µg/l	0		DIN EN ISO 10301 (F 4-2)
BTEX-Aromaten				
Benzol	μg/l	<0,1	0,1	DIN 38407-F9-1 (GC/M
Polycyclische aromatisch	e Kohlenwasserst	toffe (PAK)		
Benzo(b)fluoranthen	μg/l	<0,005	0,005	EN ISO 17993 (F18)
Benzo(k)fluoranthen	µg/l	<0,005	0,005	EN ISO 17993 (F18)
Benzo(a)pyren	μg/l	<0,005	0,005	EN ISO 17993 (F18)
Benzo(ghi)perylen	μg/l	<0,005	0,005	EN ISO 17993 (F18)
Indeno(1,2,3-cd)pyren	µg/l	<0,005	0,005	EN ISO 17993 (F18)
PAK nach EPA	µg/l	0		EN ISO 17993 (F18)

Pflanzenbehandlungs- und Schädlingsbekämpfungsmittel (PSM)

Niederlassung der AGROLAB-Labor GmbH, Bruckberg Moosstraße 6 a, 82279 Eching am Ammersee, Germany www.agrolab.de

Your labs. Your service.

Datum

14.01.2014

Kundennr.

4100010502

Seite 3 von 3

PRÜFBERICHT 561301 - 389802

	Einheit	Ergebnis	BestGr.	Grenzwert	Methode
Atrazin	µg/l	<0,03 (NWG)	0,05		EN ISO 11369 (F12) LC/MS
Desethylatrazin	µg/l	<0,05 (+)	0,05		EN ISO 11369 (F12) LC/MS
Desethylterbuthylazin	μg/l	<0,03 (NWG)	0,05		EN ISO 11369 (F12) LC/MS
Desisopropylatrazin	µg/l	<0,03 (NWG)	0,05		EN ISO 11369 (F12) LC/MS
Propazin	μg/l	<0,03 (NWG)	0,05		EN ISO 11369 (F12) LC/MS
Sebuthylazin	µg/l	<0,03 (NWG)	0,05		EN ISO 11369 (F12) LC/MS
Simazin	µg/l	<0,03 (NWG)	0,05		EN ISO 11369 (F12) LC/MS
Terbuthylazin	μg/l	<0,03 (NWG)	0,05		EN ISO 11369 (F12) LC/MS
Porosbroto Morto					

Berechnete Werte

=22
11885-E22
C10-3

Sonstige Untersuchungsparameter

00,,00,50 0,,00,000,00	.20ha.a				
Bromat (BrO3)	µg/l	<2,000 (NWG)	5	DIN EN	ISO 15061 - D34
Uran (U)	mg/l	0,00065	0,0001	DIN EN	ISO 17294-2 (E29)

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Das Zeichen "<....(NWG)" oder n.n. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Nachweisgrenze nicht nachzuweisen.

Das Zeichen "<....(+)" in der Spalte Ergebnis bedeutet, der betreffende Stoff wurde im Bereich zwischen Nachweisgrenze und Bestimmungsgrenze qualitativ nachgewiesen.

Hinweis zu Desisopropylatrazin:

= Desethylsimazin (=Atrazin-desisopropyl)

Dr.Blasy-Dr.Busse Herr Dr. Quater, Tel. 08143/79-135 FAX: 08143/7214, E-Mail: Stefan.Guenter@agrolab.de Kundenbetreuung

Beginn der Prüfungen: 03.01.2014 Ende der Prüfungen: 14.01.2014

Die Prüfergebnisse beziehen sich ausschließlich auf die Prüfgegenstände. Bei Proben unbekannten Ursprungs ist eine Plausibilitätsprüfung nur bedingt möglich. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig.

Niederlassung der AGROLAB-Labor GmbH, Bruckberg Moosstraße 6 a. 82279 Eching am Ammersee, Germany www.agrolab.de

Your labs. Your service.

Dr.Blasy-Dr.Busse Moosstr. 6A, 82279 Eching

CRYSTAL GEOTECHNIK GMBH HOFSTATTSTR. 28 86919 UTTING

Datum

04.02.2014

Kundennr.

4100010502

Seite 1 von 3

PRÜFBERICHT 569078 - 398875

Auftrag

569078 Projekt H13206

Analysennr.

398875 Wasser

Projekt

14481

Angebot 97120366 // Alternativstandort

Obermühlhausen H 12152

Ergebnis Best.-Gr. Grenzwert

Probeneingang

23.01.2014

Probenahme

22.01.2014 14:00

Probenehmer

Auftraggeber

Kunden-Probenbezeichnung

Thai 040, Ende PV

Probenart

Nitrat (NO3)

Nitrit (NO2)

Grundwasser

Einheit

mg/i

mg/l

Methode

Ruhewasserspiegel (POK)	m	23,91		
Förderstrom	Vsec	8,90		
Färbung (vor Ort)		farblos		EN ISO 7887-C1
Trübung (vor Ort)		klar		EN ISO 7887-C1
Geruch (vor Ort)		geruchlos		DEV B1/2
Wetter am Entnahmetag		2,5 °C, bewölkt		
Gerät		U-Pumpe		
pH-Wert (vor Ort)		7,39	0	DIN 38404-C5
Leitfähigkeit (vor Ort) bei 25°C	µS/cm	640	10	EN 27888 (C8)
Wassertemperatur (vor Ort)	°C	9,2	0,1	DIN 38404-C4
Physikalisch-chemische Pa	arameter			
Trübung (NTU)	NTU	0,02	0,01	DIN EN ISO 7027-C2
pH-Wert (Labor)		7,27	0	DIN 38404-C5
Leitfähigkeit bei 20 °C (Labor)	μS/cm	545	10	EN 27888 (C8)
Leitfähigkeit bei 25 °C (Labor)	µS/cm	608	10	EN 27888 (C8)
Temperatur (Labor)	°C	13,0	0,1	DIN 38404-C4
SAK 436 nm	m-1	<1,0	1	DIN EN ISO 7887-C1
Kationen				
Calcium (Ca)	mg/l	104	1	DIN EN ISO 11885-E22
Kalium (K)	mg/l	<1,0	1	DIN EN ISO 11885-E22
Magnesium (Mg)	mg/l	29,8	1	DIN EN ISO 11885-E22
Natrium (Na)	mg/l	3,9	1	DIN EN ISO 11885-E22
Anionen				
Chlorid (CI)	mg/l	4,8	1	E DIN ISO 15923-1 (D42)
Fluorid (F)	mg/l	0,048	0,02	DIN EN ISO 10304-1 (D19)
				E DINION 45000 4 (D40)

6,2

<0,020

1

0,02

E DIN ISO 15923-1 (D42)

E DIN ISO 15923-1 (D42)

Niederlassung der AGROLAB-Labor GmbH, Bruckberg Moosstraße 6 a. 82279 Eching am Ammersee, Germany www.agrolab.de

Your labs. Your service.

Datum

04.02.2014

Kundennr.

4100010502

Seite 2 von 3

PRÜFBERICHT 569078 - 398875

Einheit	Ergebnis	BestGr.	Grenzwert	Methode
mg/l	8,2	1		E DIN ISO 15923-1 (D42)
mmol/I	6,94	0,1		DIN 38409-H7-1
mg/l	<0,005	0,005		DIN EN ISO 14403
	1 min and and and and and and and and and an			
mg/l	0,84	0,5		DIN EN 1484
	0,82	0,5		DIN EN 1484
	<0.050	0.05		DIN EN ISO 11885-E22
				DIN EN ISO 11885-E22
				DIN EN ISO 17294-2 (E29)
				DIN EN ISO 11885-E22
				DIN EN ISO 11885-E22
				DIN EN ISO 11885-E22
				DIN EN ISO 11885-E22
			 	DIN EN ISO 11885-E22
				DIN EN ISO 11885-E22
				DIN EN ISO 11885-E22
				DIN EN ISO 11885-E22
~~~ <del>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</del>		<del></del>		DIN EN 1483-E12-4
				DIN EN ISO 17294-2 (E29)
	~0,0020	0,002		
		0.1		DIN EN 25813 - G21
				DIN 38409-H7-4-1
		0,1	1	DIN 30409-117-4-1
			1	DINI EN ICO 10204 (E 4.2)
				DIN EN ISO 10301 (F 4-2)
				DIN EN ISO 10301 (F 4-2)
				DIN EN ISO 10301 (F 4-2)
			<del>                                     </del>	DIN EN ISO 10301 (F 4-2)
				DIN EN ISO 10301 (F 4-2)
	AMELIANTITY			DIN EN ISO 10301 (F 4-2)
µg/l	<0,3	0,3		DIN EN ISO 10301 (F 4-2)
µg/l	0			DIN EN ISO 10301 (F 4-2)
μg/l	<0,1	0,1		DIN 38407-F9-1 (GC/MS)
Kohlenwasser	stoffe (PAK)			
µg/l	<0,005	0,005		EN ISO 17993 (F18)
µg/l		0,005		EN ISO 17993 (F18)
μg/l	<0,005	0,005		EN ISO 17993 (F18)
µg/l	<0,005	0,005		EN ISO 17993 (F18)
μg/l	<0,005	0,005		EN ISO 17993 (F18)
μg/l	0			EN ISO 17993 (F18)
	kämpfungsmitte	I (PSM)		
	<0,03 (NWG)	0,05		EN ISO 11369 (F12) LC/MS
			1	ENLICO 11200 (512) LO/MO
µg/l	<0,05 (+)	0,05		EN ISO 11369 (F12) LC/MS
	mg/l   mmol/l   mg/l   mg/l	mg/l   6,94   mg/l   <0,005   mg/l   0,84   mg/l   0,82   mg/l   0,82   mg/l   0,005   mg/l   <0,005   mg/l   <0,013   mg/l   <0,010   mg/l   <0,010   mg/l   <0,010   mg/l   <0,010   mg/l   <0,0020   mg/l   <0,0020   mg/l   <0,0020   mg/l   <0,0020   mg/l   <0,0020   mg/l   <0,1   µg/l   <0,1   µg/l   <0,1   µg/l   <0,1   µg/l   <0,1   µg/l   <0,1   µg/l   <0,2   µg/l   <0,2   µg/l   <0,3   µg/l   <0,2   µg/l   <0,005   µg/l	mg/l   8,2   1   mmol/l   6,94   0,1   mg/l   <0,005   0,005     0,005     mg/l   0,84   0,5   mg/l   0,82   0,5   mg/l   <0,005   0,005     mg/l   <0,005   0,005   mg/l   <0,005   0,005   mg/l   <0,005   0,005   mg/l   <0,005   0,005   mg/l   <0,005   0,005   mg/l   <0,005   0,005   mg/l   <0,005   0,005   mg/l   <0,005   0,005   mg/l   <0,005   0,005   mg/l   <0,005   0,005   mg/l   <0,005   0,005   mg/l   <0,005   0,005   mg/l   <0,005   0,005   mg/l   <0,005   0,005   mg/l   <0,005   0,005   mg/l   <0,0000   0,01   mg/l   <0,0000   0,01   mg/l   <0,0000   0,01   mg/l   <0,0000   0,000   mg/l   <0,0000   0,000   mg/l   <0,0000   0,000   mg/l   <0,0000   0,000   mg/l   <0,000   0,000   mg/l   <0,01   0,1   mg/l   <0,1   0,1   mg/l   <0,0   0,005   mg/l   <0,005   mg/l   <0,005   0,005   mg/l   <0,005   mg/l   <0,00	mg/l

Niederlassung der AGROLAB-Labor GmbH, Bruckberg Moosstraße 6 a., 82279 Eching am Ammersee, Germany www.agrolab.de



Your labs. Your service.

Datum

04.02.2014

Kundennr.

4100010502

DIN EN ISO 15061 - D34

DIN EN ISO 17294-2 (E29)

Seite 3 von 3

#### PRÜFBERICHT 569078 - 398875

	Einheit	Ergebnis	BestGr.	Grenzwert	Methode
Desisopropylatrazin	µg/l	<0,03 (NWG)	0,05		EN ISO 11369 (F12) LC/MS
Propazin	μg/l	<0,03 (NWG)	0,05		EN ISO 11369 (F12) LC/MS
Sebuthylazin	µg/l	<0,03 (NWG)	0,05		EN ISO 11369 (F12) LC/MS
Simazin	µg/l	<0,03 (NWG)	0,05		EN ISO 11369 (F12) LC/MS
Terbuthylazin	μg/l	<0,03 (NWG)	0,05		EN ISO 11369 (F12) LC/MS
Berechnete Werte					
Ionenbilanz	%	6,1			
Härtebereich		3	0		
Gesamthärte	°dH	21,3	0,3		DIN 38406-E22
Gesamthärte	mmol/i	3,8	0,1		DIN EN ISO 11885-E22
Carbonathärte	°dH	19,4	0,3		
pH-Wert n.Carbonats.		7,18	0		
Sättigungs-pH (n.Langelier)		7,12	0		berechnet
Delta-pH-Wert: pH(ber.) - pHC		0,12			
Sättigungsindex		0,18			
Kohlenstoffdioxid, gelöst	mg/l	37,0	4		
Kohlenstoffdioxid, gebunden	mg/i	150			
Calcitlösekapazität (CaCO3)	mg/l	-19			DIN 38404-C10-3

0,0001 0,00084 Uran (U) mg/l Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

5

Das Zeichen "<....(NWG)" oder n.n. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Nachweisgrenze nicht

<2,000 (NWG)

Das Zeichen "<....(+)" in der Spalte Ergebnis bedeutet, der betreffende Stoff wurde im Bereich zwischen Nachweisgrenze und Bestimmungsgrenze qualitativ nachgewiesen.

#### Hinweis zu Desisopropylatrazin:

Bromat (BrO3)

= Desethylsimazin (=Atrazin-desisopropyl)

Dr.Blasy-Dr.Busse Herr Dr. Ginter, Tel. 08143/79-135 FAX: 08143/7214, E-Mail: Stefan.Guenter@agrolab.de Kundenbetreuung

µg/l

Beginn der Prüfungen: 23.01.2014 Ende der Prüfungen: 04.02.2014

Die Prüfergebnisse beziehen sich ausschließlich auf die Prüfgegenstände. Bei Proben unbekannten Ursprungs ist eine Plausibilitätsprüfung nur bedingt möglich. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig.

Niederlassung der AGROLAB-Labor GmbH, Bruckberg Moosstraße 6 a, 82279 Eching am Ammersee, Germany www.agrolab.de



Your labs. Your service.

8.8

Dr.Blasy-Dr.Busse Moosstr. 6A, 82279 Eching

CRYSTAL GEOTECHNIK GMBH HOFSTATTSTR. 28 86919 UTTING

Datum

14.01.2014

Kundennr.

4100010502

Seite 1 von 3

# PRÜFBERICHT 556635 - 383566

Auftrag 556635 Obermühlhausen, H13206

Analysennr. 383566 Wasser
Probeneingang 18.12.2013
Probenahme 17.12.2013 16:20
Probenehmer Auftraggeber
Kunden-Probenbezeichnung Thai 041

Probenart Grundwasser

	Einheit	Ergebnis	BestGr.	Grenzwert	Methode
Vor-Ort-Untersuchungen					
Ruhewasserspiegel (POK)	m	29,10			
Förderdauer in Stunden	h	2,50			
Förderstrom	l/sec	3,00			
Entnahmetiefe	m	32,70			
Absenkung zum PN-Zeitp.u.RW	m	0,09			
Färbung (vor Ort)		farblos			EN ISO 7887-C1
Trübung (vor Ort)		klar			EN ISO 7887-C1
Geruch (vor Ort)		geruchlos			DEV B1/2
Wetter am Entnahmetag		4 °C, leicht bewölkt			
Gerät		U-Pumpe			
pH-Wert (vor Ort)		7,14	0		DIN 38404-C5
Leitfähigkeit bei 20 °C (vor Ort)	µS/cm	715	10		DIN EN 27888
Wassertemperatur (vor Ort)	°C	9,7	0,1		DIN 38404-C4
Physikalisch-chemische Par	ameter				
Trübung (NTU)	NTU	1,68	0,01		DIN EN ISO 7027-C2
pH-Wert (Labor)		7,09	0		DIN 38404-C5
Leitfähigkeit bei 20 °C (Labor)	µS/cm	654	10		EN 27888 (C8)
Leitfähigkeit bei 25 °C (Labor)	µS/cm	730	10		EN 27888 (C8)
Temperatur (Labor)	°C	13,0	0,1		DIN 38404-C4
SAK 436 nm	m-1	<1,0	1		DIN EN ISO 7887-C1
Kationen					
Calcium (Ca)	mg/l	117	1		DIN EN ISO 11885-E22
Kalium (K)	mg/l	3,3	1		DIN EN ISO 11885-E22
Magnesium (Mg)	mg/l	32,4	1		DIN EN ISO 11885-E22
Natrium (Na)	mg/l	5,9	1		DIN EN ISO 11885-E22
Anionen					
Chlorid (CI)	mg/l	12	1		E DIN ISO 15923-1 (D42)
Fluorid (F)	mg/l	0,079	0,02		DIN EN ISO 10304-1 (D19)
Nitrat (NO3)	mg/l	4,8	1	T	E DIN ISO 15923-1 (D42)
^				**	

Niederlassung der AGROLAB-Labor GmbH, Bruckberg Moosstraße 6 a, 82279 Eching am Ammersee, Germany www.agrolab.de



Your labs. Your service.

Datum

14.01.2014

Kundennr.

4100010502

Seite 2 von 3

#### PRÜFBERICHT 556635 - 383566

	Einheit	Ergebnis	BestGr.	Grenzwert	Methode
Nitrit (NO2)	mg/l	<0,020	0,02		E DIN ISO 15923-1 (D42)
Sulfat (SO4)	mg/l	7,5	1		E DIN ISO 15923-1 (D42)
Säurekapazität bis pH 4,3	mmoi/I	7,67	0,1		DIN 38409-H7-1
Cyanide ges.	mg/l	<0,005	0,005		DIN EN ISO 14403
Summarische Parameter					
TOC	mg/l	1,5	0,5		DIN EN 1484
DOC	mg/l	1,5	0,5		DIN EN 1484
Anorganische Bestandteil					
Aluminium (AI)	mg/I	0,083	0,05		DIN EN ISO 11885-E22
Arsen (As)	mg/i	<0.005	0.005	<del> </del>	DIN EN ISO 11885-E22
Antimon (Sb)	mg/l	<0,0005	0,0005		DIN EN ISO 17294-2 (E29
Blei (Pb)	mg/l	<0,005	0,005	l	DIN EN ISO 11885-E22
Bor (B)	mg/l	<0,020	0,02	<del> </del>	DIN EN ISO 11885-E22
Cadmium (Cd)	mg/l	<0,025	0,0005	+	DIN EN ISO 11885-E22
Chrom (Cr)	mg/l	<0,005	0,005	<del>                                     </del>	DIN EN ISO 11885-E22
Eisen (Fe)	mg/l	0,033	0,01	<del> </del>	DIN EN ISO 11885-E22
Kupfer (Cu)	mg/l	<0,005	0,005		DIN EN ISO 11885-E22
Mangan (Mn)	mg/l	0,0055	0,01		DIN EN ISO 11885-E22
Nickel (Ni)	mg/l	<0,010	0,01	-	DIN EN ISO 11885-E22
Quecksilber (Hg)	mg/l	<0,0002	0,0002		DIN EN 1483-E12-4
Selen (Se)	mg/l	<0,0020	0,002		DIN EN ISO 17294-2 (E29
Gasförmige Komponenten					
Sauerstoff (O2) gel.	mg/l	3,5	0,1	1	DIN EN 25813 - G21
Basekapazität bis pH 8,2	mmol/I	1,18	0,1		DIN 38409-H7-4-1
Leichtflüchtige Halogenko			-,:	<del>'</del>	
1,2-Dichlorethan	µg/i	<0,2	0,2		DIN EN ISO 10301 (F 4-2)
Trichlormethan	hg/i	<0,1	0,2	<del> </del>	DIN EN ISO 10301 (F 4-2)
Trichlorethen	µg/l	<0,1	0,1		DIN EN ISO 10301 (F 4-2)
Tetrachlorethen	hā\!	<0,1	0,1		DIN EN ISO 10301 (F 4-2)
Tribrommethan	μg/l	<0,1	0,3	<del> </del>	DIN EN ISO 10301 (F 4-2)
Dibromchlormethan	µg/l	<0,2	0,2		DIN EN ISO 10301 (F 4-2)
Bromdichlormethan	μg/l	<0,3	0,2		DIN EN ISO 10301 (F 4-2)
LHKW - Summe	µg/l	0		<del>                                     </del>	DIN EN ISO 10301 (F 4-2)
BTEX-Aromaten		· ·			
Benzol	µg/l	<0,1	0,1	1	DIN 38407-F9-1 (GC/M
Polycyclische aromatische		, ,	٧, ١		
Porycychische aromatische Benzo(b)fluoranthen		<0,005	0,005	T	EN ISO 17993 (F18)
Benzo(k)fluoranthen	µg/l	<0,005	0,005	<u> </u>	EN ISO 17993 (F18)
Benzo(k)nuorantnen Benzo(a)pyren	µg/l	<0,005	0,005		EN ISO 17993 (F18)
	μg/l		0,005	+	EN ISO 17993 (F18)
Benzo(ghi)perylen	μg/l	<0,005	0,005		EN ISO 17993 (F18)
Indeno(1,2,3-cd)pyren	µg/l	<0,005	0,005		EN ISO 17993 (F18)
PAK nach EPA	µg/l	0		<u> </u>	EN 190 1/999 (L 19)
Pflanzenbehandlungs- und				1	
Atrazin	µg/l	<0,03 (NWG)	0,05	<del> </del>	EN ISO 11369 (F12) LC/M
Desethylatrazin	µg/l	<0,05 (+)	0,05	1	EN ISO 11369 (F12) LC/M

Niederlassung der AGROLAB-Labor GmbH, Bruckberg Moosstraße 6 a. 82279 Eching am Ammersee, Germany www.agrolab.de



Your labs. Your service.

Datum

14.01.2014

Kundennr.

4100010502

Seite 3 von 3

#### PRÜFBERICHT 556635 - 383566

	Einheit	Ergebnis	BestGr.	Grenzwert	Methode
Desethylterbuthylazin	µg/l	<0,03 (NWG)	0,05		EN ISO 11369 (F12) LC/MS
Desisopropylatrazin	µg/l	<0,03 (NWG)	0,05		EN ISO 11369 (F12) LC/MS
Propazin	µg/l	<0,03 (NWG)	0,05		EN ISO 11369 (F12) LC/MS
Sebuthylazin	µg/l	<0,03 (NWG)	0,05		EN ISO 11369 (F12) LC/MS
Simazin	μg/l	<0,03 (NWG)	0,05		EN ISO 11369 (F12) LC/MS
Terbuthylazin	μg/l	<0,03 (NWG)	0,05		EN ISO 11369 (F12) LC/MS
Berechnete Werte					
Ionenbilanz	%	7,0			
Härtebereich		4	0		
Gesamthärte	°dH	24,1	0,3		DIN 38406-E22
Gesamthärte	mmol/l	4,3	0,1		DIN EN ISO 11885-E22
Carbonathärte	°dH	21,5	0,3		
pH-Wert n.Carbonats.		7,09	0		
Sättigungs-pH (n.Langelier)		7,03	0		berechnet
Delta-pH-Wert: pH(ber.) - pHC		0,11			
Sättigungsindex		0,17			
Kohlenstoffdioxid, gelöst	mg/l	51,9	4		
Kohlenstoffdioxid, gebunden	mg/l	170			
Calcitlösekapazität (CaCO3)	mg/l	-21			DIN 38404-C10-3
Sonstige Untersuchungspar	ameter				
Bromat (BrO3)	μg/l	<2,000 (NWG)	5		DIN EN ISO 15061 - D34
Uran (U)	mo/l	0,00098	0,0001		DIN EN ISO 17294-2 (E29)

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Das Zeichen "<....(NWG)" oder n.n. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Nachweisgrenze nicht nachzuweisen.

Das Zeichen "<....(+)" in der Spalte Ergebnis bedeutet, der betreffende Stoff wurde im Bereich zwischen Nachweisgrenze und Bestimmungsgrenze qualitativ nachgewiesen.

#### Hinwels zu Desisopropylatrazin:

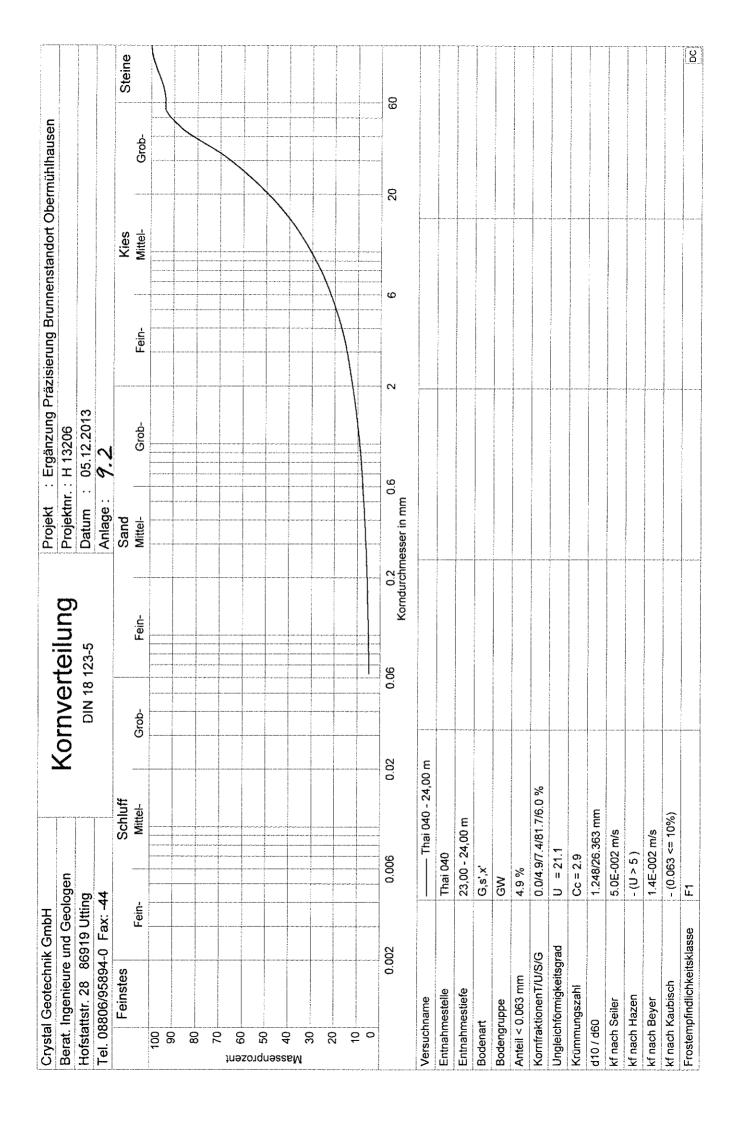
= Desethylsimazin (=Atrazin-desisopropyl)

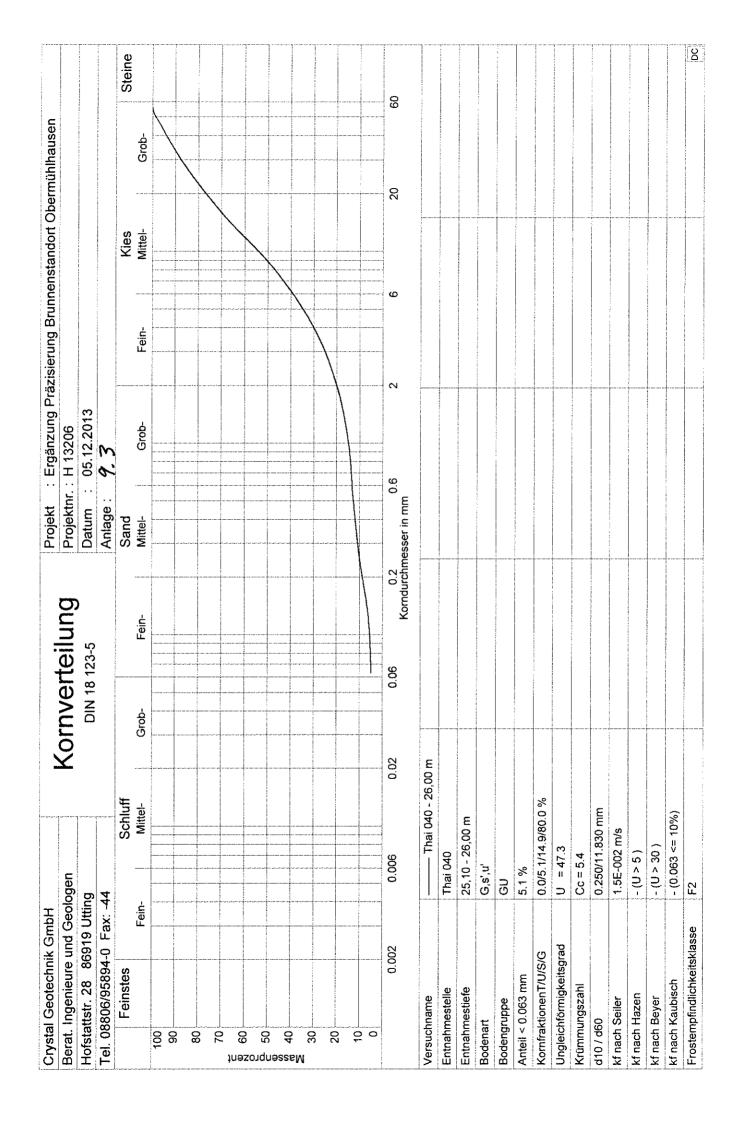
Dr.Blasy-Dr.Busse Herr Dr. Ganter, Tel. 08143/79-135 FAX: 08143/7214, E-Mail: Stefan.Guenter@agrolab.de Kundenbetreuung

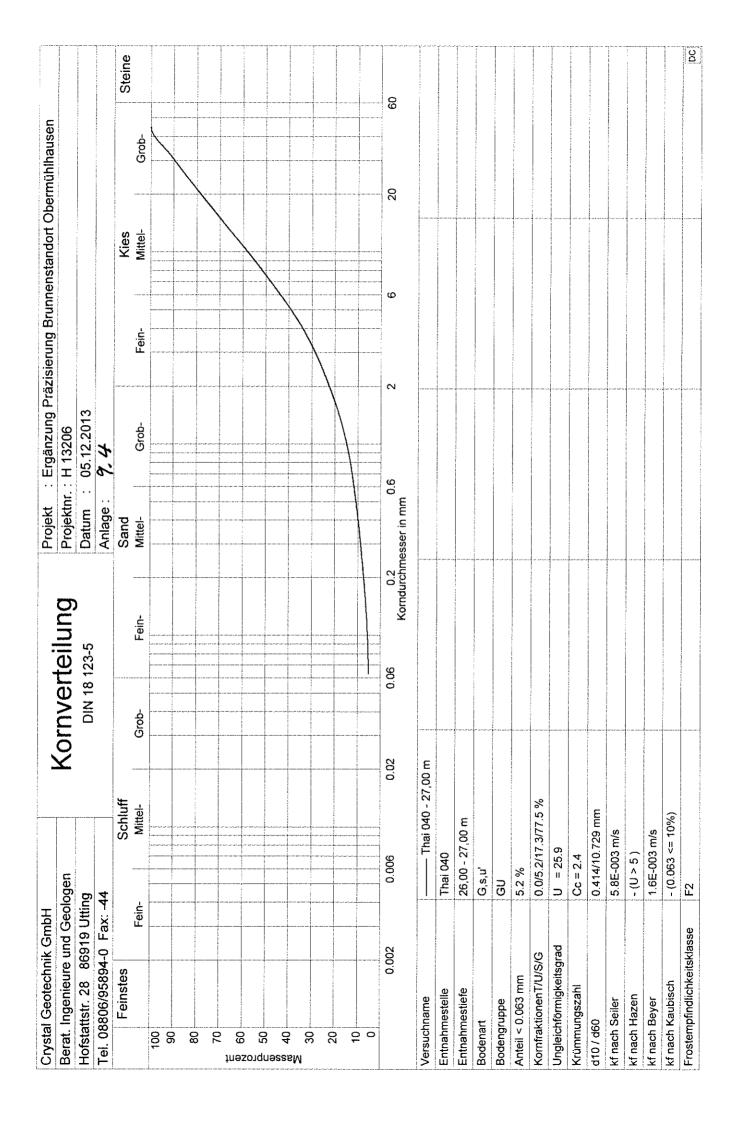
Beginn der Prüfungen: 18.12.2013 Ende der Prüfungen: 14.01.2014

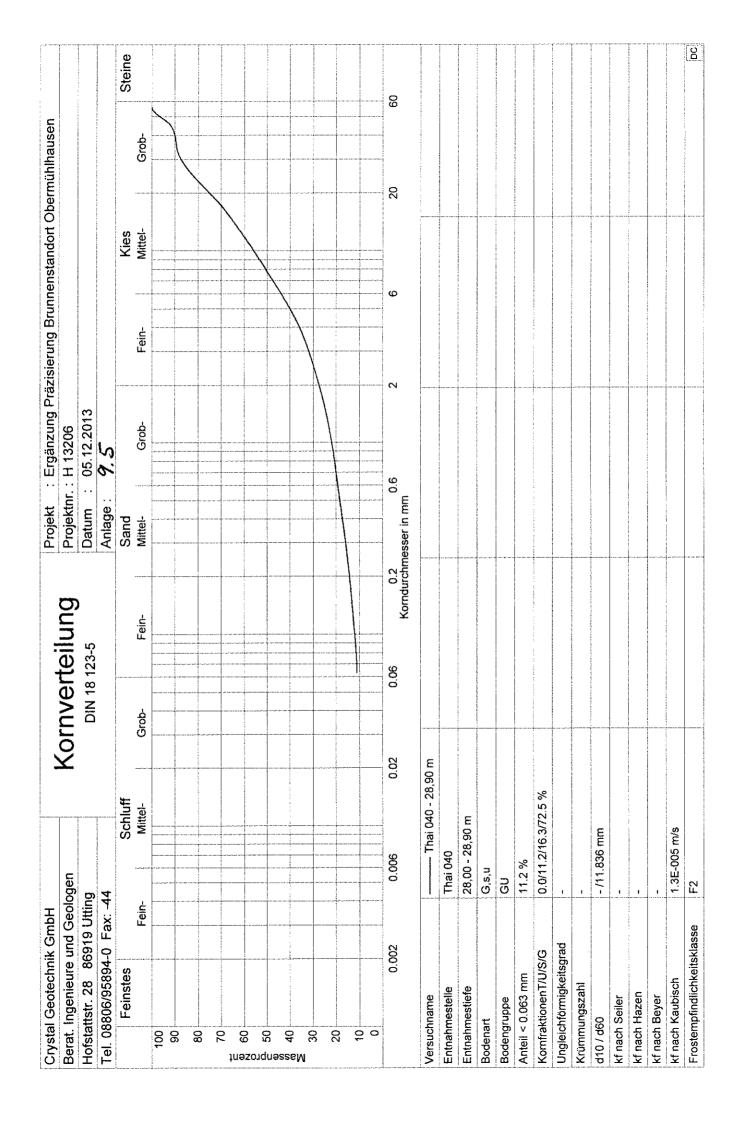
Die Prüfergebnisse beziehen sich ausschließlich auf die Prüfgegenstände. Bei Proben unbekannten Ursprungs ist eine Plausibilitätsprüfung nur bedingt möglich. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig.



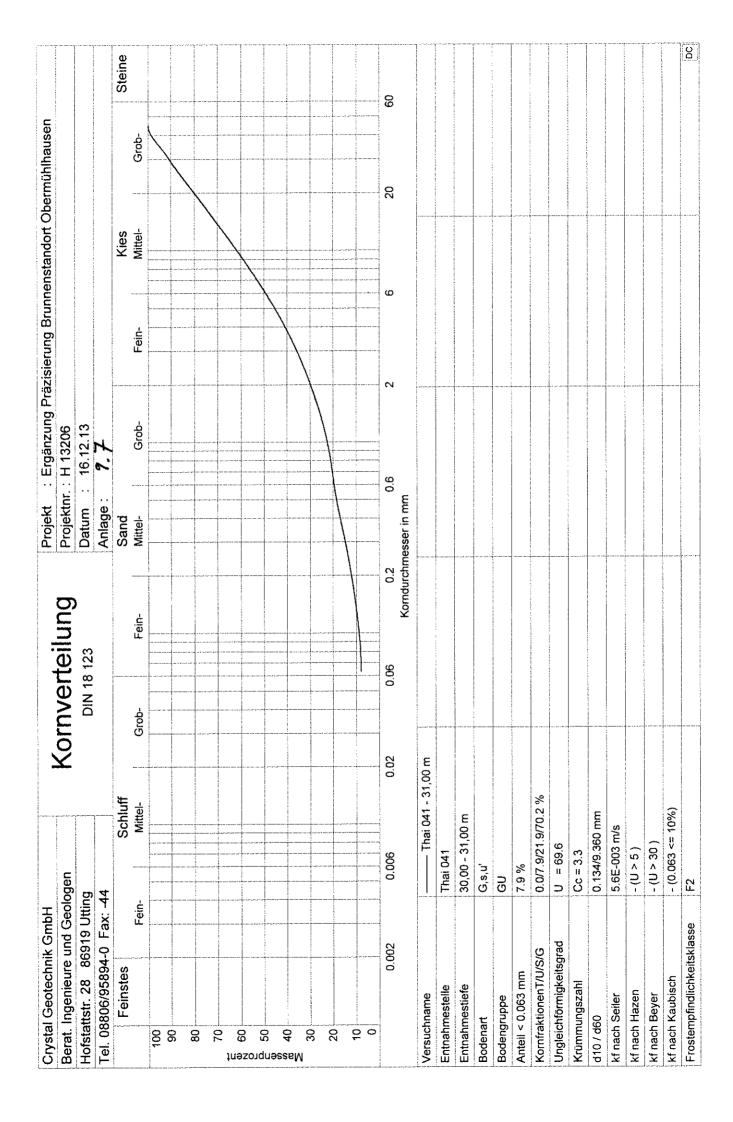

## **CRYSTAL GEOTECHNIK**

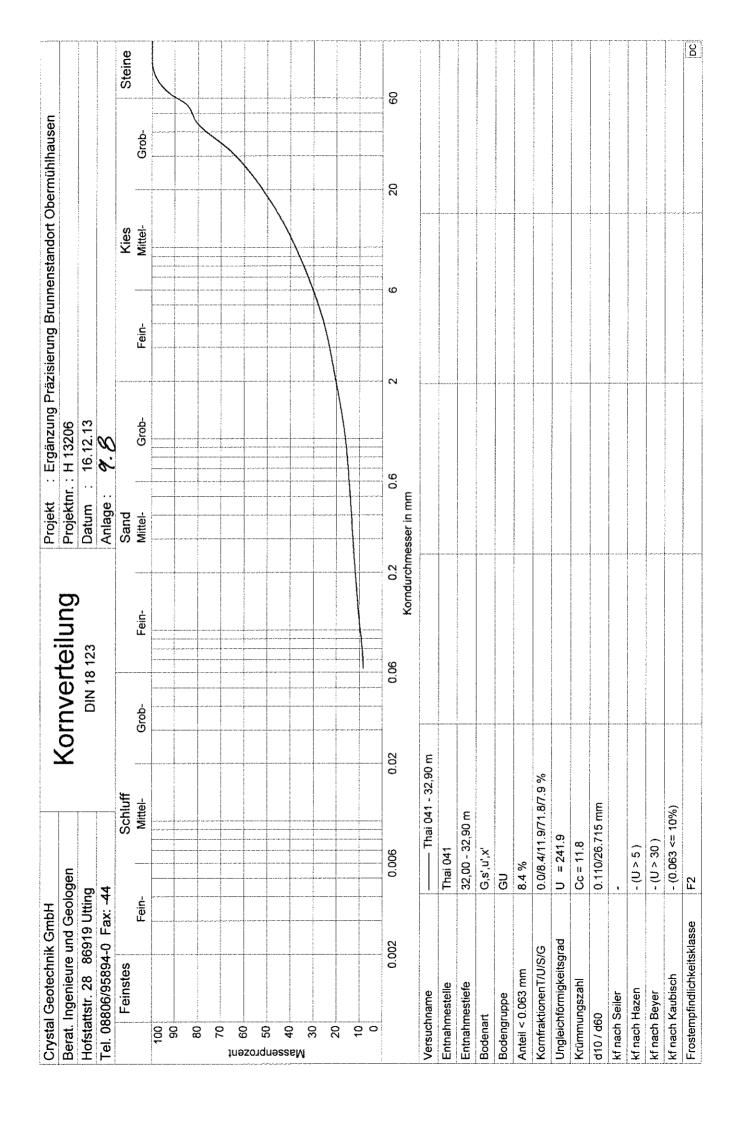

## BERATENDE INGENIEURE & GEOLOGEN GMBH


# ANLAGE (9)


# **BODENMECHANISCHE LABORVERSUCHE**

AL	INIK			129	Taschenpenetrometert	kN/m²											
CRYSTAI	GEOTECHNIK		Flügelscherversuch														
CR	GEC				Ветегкипдеп												
7	2.13		Dichten	Рд	цоскеп	t/m³											
8	05.1		DK	Q.	ıqənəj	t/m³											
Anlage: 9.1	Datum: 05.12.13			_	Konsistenz			-,-,									
	$\ \mathbf{v}\ $	IISSE	nzen	<u> 4</u>	Plastizität	%											
	SK/KA	GEBN	Zustandsgrenzen	Wp	əznərgilorenA	%											
	) 	ORER	Zust	w _L	Fließgrenze	%							***************************************				
	Bearb.:	LAB			Wasserg. w<0,4mm	%					<del></del>						
	206	ENSTELLUNG DER LABORERGEBNISSE	IG DEF	ile	%	mm £9> sid 0,2	%	G=81,7	X= 6,0		80,0		77,5		72,5		
T.	H 13	LLUN	Komanteile	in Gew. %	mm 0,2 > sid 80,0	%	7,4			14,9		17,3		16,3			
stando	Projekt-Nr.: H 13206	NSTE	Я	.11	mm £90,0 >	%	4,9			5,1		5,2		11,2			
nnen	Proj	ZUSAMME			Wassergehalt w	%	L										
Bru		USA	9	96181 N	Bodengruppe nach DI	1	ΒM	·		09		CO		O.S			
ierung		7		1 4053	Kurzzeichen nach DIA	* = stark	G,s',x'			G,s',u'		G,s',u'		G,s,u			
Ergänzung Präzisierung Brunnenstandort	Obermühlhausen		Bodenbeschreibung nach	DIN EN ISO 14688-1 und 2:2011-06		ą	Kies,	schwach sandig, schwach steinig	graubeige	Kies,	schwach sandig, schwach schluffig graubeige	Kies,	schwach sandig, schwach schluffig graubeige	Kies,	sandig, schluffig graubeige		
kt:			me		Probenart	г	ďУ			ΚP		KP		KP			
Projekt:	Ort:		Probenahme		Entnahmetiefe	ш	23,00	24,00	,	25,10	26,00	26,00	27,00	28,00	29,90		
	-		Pro		Entnahmestelle	-	Thai	40			04	Thai	40		04		








AL	HNIK			186	Taschenpenetrometerte	3						
YST	CRYSTAL GEOTECHNIK		?lügelscherversuch			kN/m²						
CR	GE(				Вететкипдеп							
6	2.13		Dichten	βď	поскеп	t/m³						
6.	16.1		Di	d	ıqənəj	t/m³						
Anlage: 9.6	Datum: 16.12.13			-	Konsistenz							
	A	IISSE	nzen	- <del>1</del>	Plastizität	%		:				
	SK/KA	GEBN	Zustandsgrenzen	Wp	əznərgliorenA	%						
ı,	b.:	ORER	Zust	w ^r	əznərgdəil7	%						
Ihause	Bearb.:	LAB(			-	Wasserg. w<0,4mm	%					
ermüh	3206	ENSTELLUNG DER LABORERGEBNISSE	ile	% _	тт £8> sid 0,2	%	70,2	71,8 X=7,9				
r Ob	H		Kornanteile	.e	mm 0,2 > sid	%	21,9	6'11				
stando	Projekt-Nr.: H 13206	NSTE	አ	·#	mm £90,0 >	%	7,9	8,4				
nnen	Proj	MME			Wassergehalt w	%						
Bru		ZUSAMM	96	181 N	Bodengruppe nach DI		GU	GU	<del></del>			
ierung		Z	Z	,	1 4053	Kurzzeichen nach DIV	* = stark	G,s,u'	G,s',u',x'			
Ergänzung Präzis	Ergänzung Präzisierung Brunnenstandort Obermühlhausen Obermühlhausen Projekt-Nr.: H 13206 Bearb.:		Bodenbeschreibung nach	14688-1 und 2:2011-06		,	Kies, sandig, schwach schluffig	Kies, schwach sandig, schwach schluffig, schwach steinig				
ekt:			hme	-	Probenart		KPI	KP2				
Projekt:	Ort:		Probenahme	************************************	Entnahmetiefe	ш	30,00	32,00 32,90				
			P.		Entnahmestelle	ı	Thai 041	Thai 041				





## **CRYSTAL GEOTECHNIK**

BERATENDE INGENIEURE & GEOLOGEN GMBH

ANLAGE (10)

BESTIMMUNG DES SCHÜTTKORNDURCHMESSERS FÜR FILTERKIES

# Bestimmung des Schüttkorndurchmessers nach DVGW W 113 März 2001

Projekt: Präzisierende Untersuchung Brunnenstandort Obermühlhausen H132(
Bohrungen zur Baugrunderkundung

Parameter		Probe		*****	
	Thai 040 /	Thai 040 /	Thai 040 /	Thai 040 /	
	23,00-24,00	25,10-26,00	26,00-27,00	28,00-28,90	
gegeben:					
U	21,1	47,3	25,9	236	
d _g	10,00 mm	4,00 mm	3,00 mm	2,50 mm	
gewählt:					
$d_{\mathrm{g}}$	10,00 mm	4,00 mm	3,00 mm	2,50 mm	
$F_{g}$	5	5	5	5	
berechnet au	ıs gewählten F	arametern:			
$Ds = d_g * F_g$	50,00 mm	20,00 mm	15,00 mm	12,50 mm	

Schüttkorndurchmesser:

(DIN 4924)

Thai 040 / 23,00-24,00 8-16 mm Thai 040 / 25,10-26,00 8-16 mm Thai 040 / 26,00-27,00 8-16 mm Thai 040 / 28,00-28,90 8-16 mm

#### Bemerkungen:

gem. DVGW -Merkblatt ergibt sich ein Filterkorndurchmesser

8-16mm

Wir empfehlen einen Filterkieskorndurchmesser von 5,6 bis 8mm zu verwenden

# Bestimmung des Schüttkorndurchmessers nach DVGW W 113 März 2001

Projekt: Wärmepumpenanige Realschule Herrsching W10472
Bohrungen zur Baugrunderkundung

Parameter		Probe	<u> </u>	ENCLOSE EL SUCCESSION DE LA CONTRACTION DE LA CO	
	Thai 041 /	Thai 041 /			
	30,00-31,00	32,00-32,90			
gegeben:					
U	69,6	241,9			
$d_{g}$	2,00 mm	6,00 mm			
gewählt:					
$d_g$	2,00 mm	6,00 mm			
$F_{g}$	5	5			
berechnet au	ıs gewählten F	arametern:			
$D_S = d_g * F_g$	10,00 mm	30,00 mm			

Schüttkorndurchmesser: (DIN 4924)

Thai 041 / 30,00-31,00 8-16 mm Thai 041 / 32,00-31,90 8-16mm

#### Bemerkungen:

gem. DVGW -Merkblatt ergibt sich ein Filterkorndurchmesser

8-16mm

Wir empfehlen einen Filterkieskorndurchmesser von 5,6 bis 8mm zu verwenden